SGS MATROLAB (PTY) LTD -CIVIL ENGINEERING SEVICES- Reg. No.: 2003/021980/07 - VAT. Reg. No.: 4040210587 256 Brander Street, Jan Niemand Park, Pretoria. P.O. Box 912387, Silverton, 0127 Tel.: (012) 800 1299 Fax. (012) 800 3043 # Geotechnical Factual Report: On behalf of: Nyeleti Consulting (Pty) Ltd Report 1 of 1 ## Contents | Doc | ument Control2 | |-------|---| | 1. | Background | | 2. | Field work | | 3. | Limitations and Assumptions4 | | 4. | Climate4 | | 5. | Geology | | 6. | Topography6 | | 7. | Test Pit Profile Summary | | Bibli | ography8 | | APP | ENDIX A | | APP | ENDIX B | | | | | Figu | re 1: Site Layout (Image source: Google Earth)3 | | Figu | re 2: Map of South-Africa climate (SANParks)5 | | Figu | re 3: Site Geology (Geological series map 1:250 000 Map 2628 East Rand); cropped not to scale 6 | | Figu | re 4: Topography (Image Source: Google Earth) | ## **Document Control** | Title: | |---| | Site: Woodmead water Upgrade | | Client: Nyeleti Consulting (Pty) Ltd | | Reference: PL/45743 | | Version: 1 | | Prepared by: | | | | G. Kruger | | Reviewed by: | | Miles deorde Le Grange
BSc. (hons) Engineering Geology | ### 1. Background SGS Matrolab was appointed by Nyeleti Consulting (Pty) Ltd to carry out a field investigation to assess the material properties of the materials along the WOODMEAD WATER UPGRADE. The objective of the investigation as understood from the email correspondence with the client representative of Nyeleti Consulting (Pty) Ltd is to determine the encountered layers and material properties along the pipeline route. Figure 1: Site Layout (Image source: Google Earth) The main purpose of the factual report is to assist in the designing and planning process of Nyeleti Consulting (Pty) Ltd in terms of giving relevant information pertaining to possible insitu materials that can be used as construction materials for the pipeline. The investigation therefor concentrated on the engineering properties of the materials encountered. ### 2. Field work The investigation was done by excavating a number of test pits, (total of 17) to a maximum depth of 2m and profiling the test pits according to the MCCSSO method (Jennings et.al., 1973). The test pits were reinstated by backfilling the excavated test pit with the excavated material and compacted by driving over the backfilled test pit with the rear wheels of the TLB. Disturbed soil samples were taken from the test pits according to TMH 5 and were submitted to our soil laboratory for testing. The test consists of: Road indicator test in accordance with SANS 3001. ### 3. Limitations and Assumptions In the investigation for the Woodmead Water Upgrade project all care has been taken to provide accurate information based on limited tests and expertise. Any spatial or temporal extrapolation or inference is conjectural, and no liability can be accepted by SGS Matrolab Pty (Ltd) for its accuracy. A topographical survey or surface hydro census was not part of our scope, therefor no definite results were obtained in terms of catchment areas and storm water preferred natural pathways. Based on experience, desk studies and field observations assumed site topography is given. Moisture variation will occur. ### 4. Climate The weather conditions in the Woodmead area can be roughly estimated in accordance with the Weinert's N-Value (Weinert, 1980) with an N-Value range between 2 and 5. The region can be classified as a moderately humid region, and thus the main mode of weathering will be chemical. Figure 2: Map of South-Africa climate (SANParks) ### 5. Geology The water pipeline cuts across a number of different geological structures. The Northern section of the pipe line is underlain by Intrusive rock types namely gneiss, migmatite & porphyritic granodiorite of the Halfway House Granite formation. The southern section of the pipe line is underlain by intrusive rock types namely grey medium grained granodiorite of the Halfway House Granite Formation. See Figure 3 on next page Figure 3: Site Geology (Geological series map 1:250 000 Map 2628 East Rand); cropped not to scale ## 6. Topography A topographical survey was not part of the scope of works, but a visual aid of the topography along the length of the water pipeline is given by a google Earth image below. See figure 4 on next page. Figure 4: Topography (Image Source: Google Earth) ### 7. Test Pit Profile Summary The test pit summary is an overlook on the encountered layers, the specific test pit/horizon details, characteristics, descriptions, and properties should be taken from the profile report. ### **Test Pits** #### Topsoil Layers: The material encounter in the topsoil layer has varying soil types and varied in thicknesses between 0.1m to 0.8m #### • Imported Layers: The test pits where imported layers were encountered had 1-2 layers imported layers. These layers showed signs of reworking. There are imported layers that have building rubble in the soil horizon. The imported material layer thickness varied between 0.15m-1.15m and encountered depths from 0.1m to 0.8m. #### Residual Layers: The described residual material encountered in the test pits varied in thickness and depth. The thickness of the layer varied between 0.2m-1.7m and encountered depths of between 0.3m-1.6m. ### 8. Excavatability During the field work a Tractor Backhoe Loader (TLB) were used for the excavation of the test pits up to a maximum depth of 2 meters with refusal recorded at 4 test pits, namely TP4, TP 8, TP9 & TP10, with varying depth of between 0.4m-1.2m due to difficult excavation of dense soil. The excavatability throughout the site will vary from soft to hard excavation in accordance with SANS D1200 up to 2 meter in depth. Due to the underlying geology and the variation in weathering of the underlying rock formation excavatability will vary significantly. #### **Bibliography** - Council of Geoscience of South Africa. (n.d.). 1:250 000 Geology Map Series of South Africa. - Jennings, J., ABABrink, & AABWilliams. (1973, Jan). REVISED GUIDE TO SOIL PROFILING FOR CIVIL ENGINEERING PURPOSES IN SOUTHERN AFRICA. *THE CIVIL ENGINEER IN SOUTH AFRICA, 15*(1). - SAIEG, SAICE, AEG. (1990). Guidelines for Soil and Rock Logging in South Africa, Second Impression 2001. In A. Brink, & R. Bruin (Ed.), *Geoterminology Workshop*. - SANParks. (n.d.). SPECIFICATIONS FOR THE CONSTRUCTION OF ROADS IN THE KNP AND CONCESSION AREAS. Road Manuals. - SOUTH AFRICAN BUREAU OF STANDARDS. (1986). SABS 1200: Standardized specification for civil engineering construction. SABS. - Weinert, H. (1980). THE NATURAL ROAD CONSTRUCTION MATERIALS OF SOUTHERN AFRICA. Pretoria: National Institute for Transport and Road Research. ### End Report # APPENDIX A Photo Profile Reports # APPENDIX B Results 256 BRANDER STREET, JAN NIEMAND PARK, 256 BRANDER STREET, JAN NIEMAND FARK, PRETORIA, P O Box 912387, SILVERTON, 0127 Tel: 012 800 1299 Fax: 012 800 3043 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Page 1 of 63 Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 #### **PHOTO PROFILE REPORT - TEST PIT 1** | Test Pit TP 1 | Water
Table | | Depth
(mm) | SOIL DESCRIPTION Moisture, Colour, Consistency, Structure, Soil Type, Origin, General | SAMPLING TYPE
AND NUMBER | |------------------------------------|----------------|------|---------------|--|-----------------------------| | PROFILED BY | | 000 | | Topsoil | | | GERT KRUGER | ∃ I | 880 | 400 | | 1 | | GPS CO-ORDINATES -26,094461 | | 0000 | | Slightly Moist to Dry, Light Brown, Medium Dense
Intact, Sandy Gravel, Imported | A21 3280
R Ind | | 28,090949 |] | 0000 | | Slightly Moist to Dry, Orange, Medium Dense | A21 3281 | | DATE PROFILED | 71 | 000 | | Intact, Sandy Gravel, Residual | R Ind | | 04 October 2021 | 71 | 8000 | | | | | DATE EXCAVATED | 71 | 000 | 900 + | | | | 04 October 2021 | 71 | 8000 | | Slightly Moist, Orange, Medium dense, Intact | A21 3282 | | EXCAVATION MEANS | 71 | 000 | | Sandy Gravel, Residual | R Ind | | TLB | ∃ | 8000 | | | -24 | Notes: No refusal - TLB reached maximum depht no water seepage PROJECT: WOODMEAD WATER UPGRADE NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 2 of 63 # MATROLAB PRETORIA, P O Bo Tel: 012 800 1299 Fax: 012 800 3043 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 3 of 63 # MATROLAB PRETORIA, P O Bo Tel: 012 800 1299 Fax: 012 800 3043 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Page 4 of 63 Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Fax: 012 800 3043 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 5 of 63 #### **PHOTO PROFILE REPORT - TEST PIT 2** | Test Pit TP 2 | | (mm) | SOIL DESCRIPTION
Moisture, Colour, Consistency, Structure, Soil Type, Origin, General | SAMPLING TYPE
AND NUMBER | |---------------------------------------|---------------------------------------|-------|--|-----------------------------| | PROFILED BY
GERT KRUGER | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 500 - | Topsoil | | | GPS CO-ORDINATES -26,064317 28,092329 | | 500 | Slightly Moist, Light Brown, Dense, Intact
Gravelly Sand with Building Rubble, Imported | A21 3283
R Ind | | DATE
PROFILED 04 October 2021 | विश्व | 1100 | | | | DATE EXCAVATED 04 October 2021 | | | Slightly Moist, Orange blotched with Black, Dense | A21 3284 | | EXCAVATION MEANS TLB | | | Intact, Silty Gravel, Residual | R Ind | Notes: No refusal - TLB reached maximum depht No water seepage NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini 26 October 2021 DATE: JOB NO: PL/45743 Page 6 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 7 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 PROJECT: WOODMEAD WATER UPGRADE MENLOPARK 0102 Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 8 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE JOB NO: PL/45743 Attention: Yashini DATE: 26 October 2021 Page 9 of 63 ### **PHOTO PROFILE REPORT - TEST PIT 3** | Test Pit | TP 3 | Water
Table | Soil Depth (mm) 0 | SOIL DESCRIPTION
Moisture, Colour, Consistency, Structure, Soil Type, Origin, General | SAMPLING TYPE
AND NUMBER | |-----------------|----------|----------------|------------------------|--|-----------------------------| | PROFIL | ED BY | | 0000 | Topsoil | | | GERT K | RUGER | | C-C-C ₁ 300 | SECONDITION AT LIGHTEN HUNGERING SECOND | 4/10/2003 | | GPS CO-OI | RDINATES | | | Slightly Moist to Dry, Light Brown, Soft
Medium Dense, Intact, Sand, Imported | A21 3285
R Ind | | -26,09
28,09 | | | 800 | | | | 20,09 | 1070 | | 000 | Slightly Moist, Orange, Medium Dense | A21 3286 | | DATE PR | OFILED | 11 | 0000 | Intact, Sandy Gravel, Residual | R Ind | | 04 Octob | per 2021 | 11 | 0000 | | | | DATE EXC | CAVATED |] | 1100 ﴿ حَجَبُ | | | | 04 Octob | er 2021 | 11 | | Slightly Moist, Orange, Medium Dense | A21 3287 | | EXCAVATION | ON MEANS | 11 | | Intact, Gravelly Clayey Sand, Residual | R Ind | | TL | .B |] | A die | which research with the an entire section of the Control of School | 0.00000000 | | | |] | 2000 | | - 1 | Notes: No refusal - TLB reached maximum depht No water seepage NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE 26 October 2021 JOB NO: PL/45743 Attention: Yashini DATE: Page 10 of 63 # PRETORIA, P O Bo Tel: 012 800 1299 Fax: 012 800 3043 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 Tel: 012 800 1299 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 11 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 12 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE JOB NO: PL/45743 Attention: Yashini DATE: 26 October 2021 Page 13 of 63 #### **PHOTO PROFILE REPORT - TEST PIT 4** | Test Pit TP 4 | Water Soil Depth
Table Legend (mm) | SOIL DESCRIPTION Moisture, Colour, Consistency, Structure, Soil Type, Origin, General | SAMPLING TYPE
AND NUMBER | |------------------------------------|---------------------------------------|--|-----------------------------| | PROFILED BY | 00000 | Topsoil | | | GERT KRUGER | <u>-C-C-C</u> 200 | | 1 | | GPS CO-ORDINATES -26,090802 | | Slightly Moist, Light Brown, Medium Dense
Intact, Sand, Imported | A21 3288
R Ind | | 28,090876 | 800 | Slightly Moist to Dry, Light Grey with | | | DATE PROFILED 04 October 2021 | | Mottled Orange, Dense, Intact, Sandy Gravel
Residual | A21 3289
R Ind | | DATE EXCAVATED | \$ \$ 1000 · | | - | | 04 October 2021 | | Dry, Orange Yellow, Very Dense, Intact | A21 3290 | | EXCAVATION MEANS | | Gravel, Residual | R Ind | | TLB | 0000 | | | Notes: Refusal @ 1400 mm - very dense soil No water seepage NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini 26 October 2021 DATE: JOB NO: PL/45743 Page 14 of 63 ## **MATROLAB** 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 Tel: 012 800 1299 Fax: 012 800 3043 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 15 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE JOB NO: PL/45743 Attention: Yashini DATE: 26 October 2021 Page 16 of 63 ### **PHOTO PROFILE REPORT - TEST PIT 5** | Test Pit | TP 5 | Water
Table | Soil
Legend | Depth
(mm) | SOIL DESCRIPTION
Moisture, Colour, Consistency, Structure, Soil Type, Origin, General | SAMPLING TYPE
AND NUMBER | |------------|----------|----------------|----------------|---------------|---|-----------------------------| | PROFIL | ED BY | | 0000 | | Topsoil | | | GERT K | RUGER |] | 0.0.0 | | \$2000 \$1.100 \$1.00 \$2.00 \$1.00
\$1.00 | COVERNO | | GPS CO-O | RDINATES | 11 | | | Slightly Moist, Light Brown, Soft, Intact
Sand, Imported | A21 3291
R Ind | | -26,08 | |] | | | | | | 28,09 | 0772 | ll . | 000 | | | 3 & | | DATE PR | OFILED | il . | %% | | Dry, Orange, Dense, Intact, Gravel
Residual | A21 3292
R Ind | | 04 Octob | per 2021 |] | %% | | | 100 | | DATE EXC | CAVATED | | (1) | 1700 | | * | | 04 Octob | oer 2021 | | 1. 1. | | Dry, Light Grey, Medium Dense, Intact | A21 3293 | | EXCAVATION | ON MEANS |] | 20. 40. 10 | | Sand, Residual | R Ind | | TL | В |] | | | | ACCURATION | | · | | H | to go a | 2000 - | | - | Notes: No refusal - TLB reached maximum depht No water seepage NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE 26 October 2021 JOB NO: PL/45743 Attention: Yashini DATE: Page 17 of 63 # MATROLAB PRETORIA, P O B. Tel: 012 800 1299 Fax: 012 800 3043 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 Fax: 012 800 3043 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 18 of 63 # PRETORIA, P O Box 912387, SILVERTON, 0127 Tel: 012 800 1299 Fax: 012 800 3043 256 BRANDER STREET, JAN NIEMAND PARK, NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 19 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE JOB NO: PL/45743 Attention: Yashini DATE: 26 October 2021 Page 20 of 63 #### **PHOTO PROFILE REPORT - TEST PIT 6** | T(D)(| TDA | Water | Soil Dept
Legend (mm | | SAMPLING TYPE
AND NUMBER | |---------------------------|-------------------|-------|--------------------------|--|-----------------------------| | Test Pit | TP 6 | Tubic | Ĉ Ĉ Ĉ | Topsoil | AND NOMBER | | PROFILE
GERT KR | | | 150 | Slightly Moist, Light Brown, Soft, Intact
Gravelly Sand, Imported | A21 32994
R Ind | | GPS CO-OR
-26,087 | | - 1 | 300 | Dry, Orange, Dense, Intact, Sandy Gravel
Imported | A21 3295
R Ind | | 28,085 | | | 700 | Slightly Moist, Light Brown, Medium Dense
Intact, Gravelly Sand, Residual | A21 3296
R Ind | | 04 Octobe | er 2021
AVATED | | 000
000
000
000 | Slightly Moist, Orange, Medium dense, Intact
Sandy Gravel, Residual | A21 3297
R Ind | | 04 Octobe
EXCAVATIO | N MEANS | 1 | 9994 1350 | slightly Moist, Orange, Medium Dense, Intact
Gravelly Clayey Sand, Residual | A21 3298
R Ind | Notes: No refusal - TLB reached maximum depht No water seepage NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE 26 October 2021 JOB NO: PL/45743 Attention: Yashini DATE: Page 21 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 22 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Page 23 of 63 Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK PROJECT: WOODMEAD WATER UPGRADE 0102 Attention: Yashini JOB NO: PL/45743 DATE: 26 October 2021 Page 44 of 63 #### **PHOTO PROFILE REPORT - TEST PIT 13** | Test Pit | TP 13 | Water
Table | | | SAMPLING TYPE
AND NUMBER | |-----------|---------|----------------|----------------------|---|---------------------------------------| | | | | 666 | Topsoil | | | PROFILE | | 1 | <u>c c</u> 350 | | 424 2240 | | GERT KR | RUGER | -11 | 3.0 | Slightly Moist, Orange, Intact
Medium dense, Gravelly Sand, Imported | A21 3319
R Ind | | GPS CO-OR | DINATES | 11 | 450 | (5) | | | -26,06 | 091 |] | 3.0 | Slightly Moist, Bark Brown, Medium Dense | A21 3320 | | 28,090 |)406 | | | Intact, Gravelly sand, Residual | R Ind | | DATE PRO | OFILED | 1 | プノント 1100 | Slightty Moist, Reddish Brown | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 05 Octobe | er 2021 | 11 | in the second | Soft to Medium Dense, Intact | A21 3321
R Ind | | DATE EXC | AVATED |] | 000 | Clayey Gravelly Sand, Residual | 11.00 | | 05 Octobe | er 2021 |] | 1500 | slightly Moist, Orange | O SALVANO SE MANOS | | EXCAVATIO | N MEANS |] | 20 C 20 | Soft to Medium dense, Intact | A21 3322 | | TLE | 3 |] | | Gravelly Silty Sand, Residual | R Ind | | | | II . | 2000 | | | Notes: No refusal - TLB reached maximum depht No water seepage NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Page 45 of 63 26 October 2021 JOB NO: PL/45743 Attention: Yashini DATE: 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Page 46 of 63 Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 47 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK PROJECT: WOODMEAD WATER UPGRADE 0102 Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 48 of 63 ### **PHOTO PROFILE REPORT - TEST PIT 14** | Test Pit | TP 14 | Water
Table | | Depth
(mm) | SOIL DESCRIPTION
Moisture, Colour, Consistency, Structure, Soil Type, Origin, General | SAMPLING TYPE
AND NUMBER | |------------|----------|----------------|------------------|---------------|--|-----------------------------| | PROFIL | ED BY | | 00000 | | Topsoil | | | GERT KI | | | C.C.C | 500 STATES | 5. 5 | 101 0000 | | GPS CO-OF | RDINATES | 1 | | | Dry, Brown, Medium dense, Intact
Sand, Imported | A21 3323
R Ind | | -26,05 | |] | Sec. | 050 | | | | 28,09 | 0019 | -11 | | 030 | | | | DATE PR | OFILED | 1 | Sec. 25, 25, 25. | | Slightly Moist, Orange, Medium Dense
Intact, Gravelly Sand, Imported | A21 3324
R Ind | | 05 Octob | er 2021 |] | | | | | | DATE EXC | CAVATED | 11 | | 1100 | | 1 | | 05 Octob | er 2021 | 11 | | 9 | Slightly Moist, Orange, Medium dense | A21 3325 | | EXCAVATION | ON MEANS | 11 | | | Intact, Gravelly Silty Sand, Residual | R Ind | | TL | В |] | | | | | | · | | H | is go as | 2000 | | - | Notes: No refusal - TLB reached maximum depht NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini 26 October 2021 JOB NO: PL/45743 DATE: Page 49 of 63 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 50 of 63 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 51 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE JOB NO: PL/45743 Attention: Yashini DATE: 26 October 2021 Page 52 of 63 ## **PHOTO PROFILE REPORT - TEST PIT 15 & 16** | Test Pit TP 15 & 16 | Water Soil De Table Legend (m | SOIL DESCRIPTION m) Moisture, Colour, Consistency, Structure, Soil Type, Origin, General | SAMPLING TYPE
AND NUMBER | |------------------------------------|---------------------------------------|--|---| | PROFILED BY | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | Topsoil | | | GERT KRUGER | -C-C-G 30 | 0 Slightly Moist, Brownish Red | 0.0000000000000000000000000000000000000 | | GPS CO-ORDINATES -26,056061 | | Medium Dense, Intact, Gravelly
Sand
Imported | A21 3328
R Ind | | 28,088786 | 80 | | | | DATE PROFILED | 8000 | Slightly Moist, Brown, Medium dense, Intact
Sandy Gravel, Imported | A21 3329
R Ind | | 05 October 2021 | 8000 | | | | DATE EXCAVATED |] Min 12 | 00 | | | 05 October 2021 | | slightly Moist, Orange, Medium Dense, Intact | A21 3330 | | EXCAVATION MEANS | | Clayey Silt, Residual | R Ind | | TLB |] | | | | | 20 | 00 | | Notes: No refusal - TLB reached maximum depht No water seepage Building rubble @ 800 - 1200 mm NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini 26 October 2021 JOB NO: PL/45743 Page 53 of 63 DATE: 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 54 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 55 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE 26 October 2021 JOB NO: PL/45743 Attention: Yashini DATE: Page 56 of 63 ### **PHOTO PROFILE REPORT - TEST PIT 17** | Test Pit | TP 17 | Water
Table | | Depth
(mm) | SOIL DESCRIPTION
Moisture, Colour, Consistency, Structure, Soil Type, Origin, General | SAMPLING TYPE
AND NUMBER | |--------------------|-------------------------------|----------------|-----------|---------------|---|-----------------------------| | | ILED BY
KRUGER | | 0,0,0,0,0 | | Topsoil | | | -26,0 | ORDINATES
056390
085654 | 1 | | | Slightly Moist, Reddish - Brown Orange
Medium Dense, Intact, Gravelly Sand
Imported | A21 3326
R Ind | | | PROFILED
ober 2021 |] | | 850 | | | | DATE EX
05 Octo | CCAVATED ober 2021 | 1 | | | Slightly moist, Greyish Brown, Medium Dense
Intact, Gravelly Silty Sand, Imported | A21 3327
R Ind | | | LB | 1 | | | AV 100 MI | | Notes: No refusal - TLB reached maximum depht No water seepage Building rubble @ 200 - 850 mm Big boulders @ 850 - 2000 mm NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini 26 October 2021 DATE: JOB NO: PL/45743 Page 57 of 63 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 58 of 63 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 59 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini JOB NO: PL/45743 DATE: 26 October 2021 Page 60 of 63 ### **PHOTO PROFILE REPORT - TEST PIT 18** | Test Pit | TP 18 | Water
Table | Soil
Legend | Depth
(mm)
0 | SOIL DESCRIPTION Moisture, Colour, Consistency, Structure, Soil Type, Origin, General | SAMPLING TYPE
AND NUMBER | |---------------------------|---------------------------------|----------------|----------------|--|---|-----------------------------| | | LED BY
KRUGER | | 0,0,0,0,0,0 | | Topsoil | | | -26,0 | DRDINATES 49795 85837 | 1 | 0 0 0 | 8 | | | | 05 Octo DATE EX 05 Octo | her 2021
CAVATED
ber 2021 | | | ************************************** | Light Orange Yellow, Medium Dense
Intact, Gravelly Sand, Residual | A21 3333
R Ind | | | ON MEANS
LB | | | 2000 - | | | Notes: No refusal - TLB reached maximum depht NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini 26 October 2021 DATE: JOB NO: PL/45743 Page 61 of 63 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 62 of 63 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 63 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 PROJECT: WOODMEAD WATER UPGRADE MENLOPARK 0102 Attention: Yashini JOB NO: PL/45743 DATE: 26 October 2021 Page 24 of 63 ### **PHOTO PROFILE REPORT - TEST PIT 7** | Test Pit | TP 7 | Water
Table | Soil
Legend | Depth
(mm) | SOIL DESCRIPTION Moisture, Colour, Consistency, Structure, Soil Type, Origin, General | SAMPLING TYPE
AND NUMBER | |--------------------|---------|----------------|----------------|---------------|--|-----------------------------| | | | | 666 | | Topsoil | | | PROFILE
GERT KR | | { | 2.2.2 | 150 | | | | OLIVI KIN | COCIN | 1 | 1. 100 | - 1 | Dry, Light Orange, Very Dense, Intact | A21 3299 | | GPS CO-OR | DINATES |] | 1* | | Gravelly Sand, Imported | R Ind | | -26,087 | 7247 |] | | | | | | 28,085 | 895 | | | 800 | | | | DATE PRO | OFILED | 1 | | | Slightly Moist, Orange, Dense, Intact
Gravelly Clayey Silt, Residual | A21 3300
R Ind | | 04 Octobe | er 2021 | 11 | | | | | | DATE EXC | AVATED | 11 | | 1800 | | * | | 04 Octobe | er 2021 |] | | | Slightly Moist, Orange Mottled with Pale Red | A21 3301 | | EXCAVATIO | N MEANS |] | | | and Black, Medium Dense, intact, Gravelly Clayey Silt, Residual | R Ind | | TLE | 3 | 11 | 114844 | 1 | Jill, Medidudi | | Notes: No refusal - TLB reached maximum depht NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini 26 October 2021 DATE: JOB NO: PL/45743 Page 25 of 63 ## **M**ATROLAB 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON , 0127 Tel: 012 800 1299 Fax: 012 800 3043 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 26 of 63 ## **MATROLAB** $256~\rm BRANDER$ STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON , 0127 Tel: 012 800 1299 Fax: 012 800 3043 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 27 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini JOB NO: PL/45743 DATE: 26 October 2021 Page 28 of 63 ## **PHOTO PROFILE REPORT - TEST PIT 8** | Test Pit | TP 8 | Water
Table | Soil
Legend | Depth
(mm) | SOIL DESCRIPTION
Moisture, Colour, Consistency, Structure, Soil Type, Origin, General | SAMPLING TYPE
AND NUMBER | |----------|---|----------------|----------------|---------------|--|-----------------------------| | | LED BY
KRUGER | | 0,0,0,0,0 | | Topsoil | | | -26,0 | DRDINATES
981189
86697 | | | 100 | Moist, Orange, Soft, Intact, Gravelly Clay
Imported | A21 3302
R ind | | 04 Octo | ROFILED
ober 2021
CCAVATED
ober 2021 | | | | Dry, Light Orange, Very Dense, Intact | A21 3303 | | _ | ION MEANS | 1 | | i l | Gravelly Sand, Imported | R Ind | Notes: Refusal @ 400 mm - very dense soil NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE 26 October 2021 JOB NO: PL/45743 Attention: Yashini DATE: Page 29 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 30 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 PROJECT: WOODMEAD WATER UPGRADE MENLOPARK 0102 Attention: Yashini JOB NO: PL/45743 DATE: 26 October 2021 Page 31 of 63 ## **PHOTO PROFILE REPORT - TEST PIT 9** | Test Pit | TP 9 | Water
Table | Soil
Legend | Depth
(mm) | SOIL DESCRIPTION
Moisture, Colour, Consistency, Structure, Soil Type, Origin, General | SAMPLING TYPE
AND NUMBER | |----------------------|---------|----------------|----------------|---------------|--|-----------------------------| | PROFILE | ED BY | 1 | 0000 | | Topsoil | | | GERT KR | | 1 | 99 | 200 | Moist, Orange, Soft, Intact, Gravelly Clay | A21 3304 | | GPS CO-OR
-26,078 | | | 99 | | Imported | R Ind | | 28,087 | '195 | | | 8 | Slightly Moist, Orange, Dense, Intact | A21 3305 | | DATE PRO | | | | | Gravelly Sand, Imported | R Ind | | DATE EXC | AVATED | | W. S. | 600 | Slightly Moist, Pale Brown with Mottled Yellow | | | EXCAVATIO | N MEANS | | | i | Dense to Very Dense, Intact Gravelly Sand, Residual | A21 3306
R Ind | | Hand T | OOIS | 1 | 3 - 3 - 1 s | 1200 | | 8 | Notes: Refusal @ 1200 mm - very dense soil NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini JOB NO: PL/45743 DATE: 26 October 2021 Page 32 of 63 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Page 33 of 63 Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 PROJECT: WOODMEAD WATER UPGRADE MENLOPARK 0102 Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 34 of 63 ### **PHOTO PROFILE REPORT - TEST PIT 10** | Test Pit | | Water
Table | Soil
Legend | Depth
(mm) | SOIL DESCRIPTION
Moisture, Colour, Consistency, Structure, Soil Type, Origin, General | SAMPLING TYPE
AND NUMBER | |---------------------------------|---------|----------------|---|---------------|--|-----------------------------| | PROFILE | D BY | | 000000000000000000000000000000000000000 | | Topsoil | | | GERT KRU | JGER | | | 300 | | | | GPS CO-ORE | DINATES | | | | Slightly Moist, Orange, Soft, Intact
Gravelly Sandy Clay, Imported | A21 3307
R Ind | | -26,075 ²
28,0877 | | | | 600 | | | | 20,0077 | 40 | | | | Dry, Light Orange, Dense, Intact | A21 3308 | | DATE PRO | FILED | | 3. | | Gravelly Sand, Imported | R Ind | | 05 October | r 2021 | | | | | | | DATE EXCA | VATED | ł | | 800 | | | | 05 October | r 2021 | | 300 | | Slightly Moist, Orange, Medium Dense to Dense | A21 3309 | | EXCAVATION | MEANS | | | ! | Intact, Gravelly Sand, Residual | R Ind | | TLB | | | 100 | | | 20002000000 | | | | - 1 | to great | 1200 | | | Notes: Refusal @ 1200 mm - dense soil NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini 26 October 2021 JOB NO: PL/45743 DATE: Page 35 of 63 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: JOB NO: PL/45743 26 October 2021 Page 36 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini JOB NO: PL/45743 DATE: 26 October 2021 Page 37 of 63 ### **PHOTO PROFILE REPORT - TEST PIT 11** | Test Pit TP 11 | Water Soil Deoth (mm) | SOIL DESCRIPTION Moisture, Colour, Consistency, Structure, Soil Type, Origin, General | SAMPLING TYPE
AND NUMBER | |--|-----------------------|--|-----------------------------| | | | Topsoil | | | PROFILED BY
GERT KRUGER | 200 | Slightly Moist, Orange, Soft, Intact
Gravelly Sand, Imported | A21 3310
R Ind | | GPS CO-ORDINATES -26,070408 | 1400 | Slightly Moist, Orange, Dense, Intact
Gravelly Sand, Imported | A21 3311
R Ind | | 28,089092 DATE PROFILED | | Slightly Moist, Dark Brown, Medium Dense
Intact, Sand, Residual | A21 3312
R Ind | | 05 October 2021 DATE EXCAVATED 05 October 2021 | 1100 | Slightly Moist, Yellowish Brown
Soft to Medium Dense, Intact
Sand, Residual | A21 3313
R Ind | | EXCAVATION MEANS TLB | 1600 + | Slightly Moist, Brownish Yellow
Soft to Medium dense, Intact
Clayey Sand, Residual | A21 3314
R Ind | Notes: No refusal - TLB reached maximum depht NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini 26 October 2021 JOB NO: PL/45743 DATE: Page 38 of 63 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 39 of 63 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK PROJECT: WOODMEAD WATER UPGRADE 0102 Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 40 of 63 ### **PHOTO PROFILE REPORT - TEST PIT 12** | Test Pit | TP 12 | Water
Table | Soil
Legend | Depth
(mm) | SOIL DESCRIPTION
Moisture, Colour, Consistency, Structure, Soil Type, Origin, General | SAMPLING TYPE
AND NUMBER | |------------|----------|----------------|----------------|---------------|--|---| | | | | ,0,0, | 0 | Topsoil | | | PROFIL | LED BY |] | C C | 200 | | | | GERT K | RUGER | 4 | | | Slightly Moist, Light Orange, Soft, Intact
Gravelly Sand, Imported | A21 3315
R Ind | | GPS CO-O | RDINATES | 11 | 10/0 | 550 | F4 | | | -26,06 | 64990 | 71 | | | Moist, Reddish Brown, Soft, Intact | A21 3316 | | 28,09 | 90453 |] | | | Gravelly Clay, Residual | R Ind | | DATE PR | ROFILED | ╢ | | 1100 | Mark Office and Mark Office and Office | 101 0017 | | 05 Octol | per 2021 | 11 | | | Moist, Olive, Soft, Intact, Sandy Clay
Residual | A21 3317
R Ind | | DATE EX | CAVATED | 11 | 11/2 | | TVO TO THE TOTAL T | T III | | 05 Octol | ber 2021 | 11 | 19/9 | 1700 - | 2. Control Michigan March and Control | N. 100 (100 (100 (100 (100 (100 (100 (100 | | EXCAVATION | ON MEANS | 7 | 19/9 | | Moist, Brownish Yellow, Soft, Intact | A21 3318 | | TL | В |] | 19/19 | | Gravelly Clay, Residual | R Ind | | | | | 1811 | 2000 | | 3 | Notes: No refusal - TLB reached maximum depht 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 Tel: 012 800 1299 Fax: 012 800 3043 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini 26 October 2021 DATE: JOB NO: PL/45743 Page 41 of 63 #### **PHOTO PROFILE REPORT - TEST PIT 12** # MATROLAB PRETORIA, P O Bo Tel: 012 800 1299 Fax: 012 800 3043 256 BRANDER STREET, JAN NIEMAND PARK, PRETORIA, P O Box 912387, SILVERTON, 0127 NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Page 42 of 63 Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 ### **PHOTO PROFILE REPORT - TEST PIT 12** ## PRETORIA, P O Box 912387, SILVERTON, 0127 Tel: 012 800 1299 Fax: 012 800 3043 256 BRANDER STREET, JAN NIEMAND PARK, NEYELETI CONSULTING (PTY) TLD PO BOX 35158 MENLOPARK 0102 PROJECT: WOODMEAD WATER UPGRADE Attention: Yashini DATE: 26 October 2021 JOB NO: PL/45743 Page 43 of 63 #### **PHOTO PROFILE REPORT - TEST PIT 12** | | | SUMMARY OF LABORATORY RESULTS (LANE) |--------------|----------------------|--|------|------|------|-------
----------------------|-----------------|----------------|-------------------------|----------------------|------------------------------|----------------|-----------------------|----------------------|----------------------------|--------------------------|-------------------|--------------------------|--------------------------|---------------------|--------------------------|----------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------|-------------------|-------------------|-------------------|--|-------------------------|--------------|----------|--| | | | DEPTH (mm) | | | | SIEV | E ANALYSIS (| %PASSING) | | | | | SOIL M | ORTAR ANALY
(<2mm) | SIS | ATTERBER | | | | MODIFIED | AASHTO | | | CBR | | | CBR / | (UCS) | | | REACTIO | N WITH | | CLASSIFIC | ATION | | | TEST PIT NO. | COORDINATES | DESCRIPTION 1 HICKNESS (mm) SAMPLE No. | 75.0 | 63.0 | 50.0 | 37.5 | 20.0 | 14.0 | 5.0 | 0.425 | 0.075 | В | 0.425 < CS < 2 | 0.075 < FS < 0.425 | MAT <0.075 | ± = | SI | ОМС | MDD | Insitu Moisture (%) | In situ Dry Density | Relative Moisture (%) | Relative Density (%) | SWELL | 06 | 88 | 95 | 26 | 86 | 100 | PHENOLPHTALIEN | HOL | 4 | | | | | TP 01 | -26,094461 28,090949 | 0 400 400 - Topsoil - no sampling 400 700 300 3280 Slightly moist to dry, light brown, medium dense, intact, sandy gravel, imported 700 900 200 3281 Slightly moist to dry, orange, mrdium dense, intact, sandy gravel, residual 900 2000 1100 3282 Slightly moist, orange, medium dense, intact, sandy gravel, residual | | | | | 100 | 98 | 96 | 44 30
76 53
76 50 | | 2.06
1.36
1.41 | 31
30
34 | | 47 4 | 5 16
15 22
10 20 | 2 11.0 | n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a | n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | _ | n/a
n/a
n/a | n/a
n/a
n/a | | 6(0)
-6(2)
-6(2) | | | | | TP02 | -26,064317 28,092329 | 0 500 500 - Topsoil - no sampling 1100 500 1100 600 3283 Sightly most, torange, intact, gravelly sand with building rubble, imported 1100 2000 900 3284 Sightly moist, crange biotched with black, dense, intact, sandy gravel, residual 1100 110 | | 100 | | 92 9 | 100 | 99 | 94 | | 29 | 1.32 | | 27 | | 2 8 | 3.0 | n/a | n/a
n/a | n/a
n/a | n/a | | n/a
n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a | | | | n/a A-2 | | _ | <u> </u> | | | TP03 | -26,093415 28,091876 | 0 300 300 - Topsoil - no sampling 300 800 500 3285 Slightly moist to dry, light brown, soft to medium dense, intact, sand, imported 800 1100 300 3286 Slightly moist, orange, medium dense, intact, sandy gravel, residual | | | | 100 9 | 6 93 | 83 | | 48 34 | | 1.12 | 28 | 26 | 46 3 | 8 13 | 1 10.0 | n/a | n/a
n/a | n/a | n/a | n/a | n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a | n/a | n/a | n/a A-1
n/a A-2
n/a A-2 | -6(1) | | | | | TP04 | -26,090802 28,090876 | 1100 2000 900 3287 Slightly moist, orange, medium dense, intact, gravelly clayey sand, residual 0 200 200 - Topsoil - no sampling 200 800 600 3288 Slightly moist, light brown, medium dense, intact, sand, imported 800 1000 200 3289 Slightly moist to dry, light grey with mottled orange, dense, intact, sandy gravel, residual | | | 100 | 97 9 | 3 84 | | 100 | 97 55
66 36 | 33 | 1.37
1.16
1.78 | | 23 | 33 2 | 5 11
8 6 | 6.0 | n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a | n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a | n/a | _ | n/a A-2 n/a A-2 n/a A-1 | 6(0) | _ | <u> </u> | | | TP05 | -26,089455 28,090772 | 1000 1400 400 3290 Dry, orange yellow, very dense, intact, gravel, residual 0 800 800 - Topsoil - no sampling 800 1400 600 3291 Slightly moist, light brown, soft, intact, sand, imported | | | 100 | | 7 39 | 99 | 99 | | 29 | 1.24 | _ | 22 | 29 2 | 9 7 | | n/a | n/a
n/a | _ | n/a | n/a | | n/a
n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a | n/a | n/a | n/a A-2 | -6(0) | | | | | | | 1400 1700 300 3292 Dry, orange, dense, intaxt, gravel, residual 1700 2200 500 3293 Dry, light grey, medium dense, intact, sand, residual 0 150 150 - Topsoil - no sampling 150 300 150 3294 Slightly moist, light brown, soft, intact, gravelly sand, imported | | | | 10 | 100 | | 100 | 82 47
99 51
85 47 | 28 | 1.45 | 43
49
45 | 23 | 28 2 | 1 7
23 6 | 3.0 | n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a | n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a | n/a
n/a
n/a | n/a
n/a | | -4(0)
-4(0) | <u>+</u> | <u></u> | | | TP06 | -26,087247 28,085895 | 300 700 400 3295 Dry, orange, dense, intact, sandy gravel, imported 700 1100 400 3296 Slightly moist, light brown, medium dense, intact, gravelly sand, residual 1100 1350 250 3297 Slightly moist, orange, medium dense, intact, sandy gravel, residual | | | 100 | - | 00 97 | 100
95
70 | 95
89
50 | 85 52
85 52
40 25 | 30
30
16 | 1.33
1.33
2.2 | 39
39
36 | 25
25
24 | 36 2
36 2
40 3 | 16 10
16 11
12 15 | 5.0
5.0
5.0
5.0 | n/a
n/a
n/a n/a A-2
n/a A-2
n/a A-2 | -4(0)
-6(0)
-6(0) | | | | | TP07 | -26,087247 28,085895 | 1350 2000 650 3298 Slightly moist, orange, medium dense, intact, gravelly clayey sand, residual 0 150 150 - Topsoil - no sampling 150 800 650 3299 Dry, light orange, very dense, intact, gravelly sand, imported 800 1800 1000 3300 Slightly moist, orange, dense, intact, gravelly clayey silt, residual | | | | | 100 | 94 | 79 | 75 49
61 28
61 28 | 16 | 1.43
1.94
1.94 | 35
54
54 | 20 | 26 2 | 8 8
8 8 | 4.0 | n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a | n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a | n/a
n/a
n/a | _ | n/a A-2 | -7(2)
-4(0)
-6(0) | _ | <u> </u> | | | TP08 | -26,081189 28,086697 | 1800 2000 200 3301 Slightly moist, orange mottled with pale red and black, medium dense, intact, gravelly clayey silt, residual 0 100 100 - Topsoil - no sampling 100 300 200 3302 Moist, orange, soft, intact, gravelly clay, imported | | | | | 100 | 99 | 97 | 87 52
85 51 | 31 | 1.28 | 40 | | 37 3 | 0 13 | | n/a | n/a
n/a | n/a
n/a | n/a | n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a | n/a
n/a | n/a | n/a A-2 | 6(1) | | | | | TP09 | -26,078306 28,087195 | 300 400 100 3303 Dry, light crange, very dense, intact, gravelly sand, imported 0 200 200 - Topsoil - no sampling 200 350 150 3304 Moist, orange, soft, intact, gravelly clay, imported 350 600 250 3305 Sibnity moist, orange, dense, intact, gravelly sand, imported | | | | | 100 | 99 | 95 | 69 33
83 49
73 38 | 30 | 1.38 | 52
41
48 | 23 | 36 3 | 1 13 | _ | _ | n/a
n/a
n/a n/a A-2 | 6(0)
4(0) | _ | | | | TP10 | -26,075495 28,087748 | 1200 600 3306 Slightly most, plea brown with mottled yellow, dense to very dense, intact, gravelly sand, residual 0 300 300 Topsoil - no sampling 300 600 3307 Slightly most, orange, soft, intact, gravelly sandy clay, imported | | | | | | 100 | | 82 46 | + | 1.47 | 44 | | 29 1 | 8 4 | 2.0 | n/a | n/a
n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a
n/a | n/a
n/a | n/a | n/a | n/a
n/a | n/a | | b(0) | <u>+</u> | | | | IP10 | -25,075495 28,087748 | 600 800 200 3308 Dry, light orange, dense, intact, gravelly sand, imported 800 1200 400 3309 Slightly moist, orange, medium dense to dense, intact, gravelly sand, residual 0 200 200 - Topsoil - no sampling | | | | | 100 | 100 | 98 | | 26
31 | 1.48
1.35 | 40 | 23 | 37 3 | 6 11 | 5.0 | | n/a
n/a | | n/a | n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a
n/a | _ | n/a
n/a | | n/a A-2 | 6(1) | | | | | TP11 | -26,070408 28,089092 | 200 400 200 3310 Slightly moist, orange, soft, intact, gravelly sand, imported 400 700 300 3311 Slightly moist, orange, dense, intact, gravelly sand, imported 700 1100 400 3312 Slightly moist, dark brown, medium dense, intact, sand, residual 1100 1600 500 3313 Slightly moist, yellowish brown, soft to medium dense, intact, sand, residual | | | | | 100 | 99 | 99 | 74 38
94 57 | 29
22
31
34 | 1.43
1.67
1.18
1.18 | 49
40 | 22 27 | 29 2 | 9 12
7 9
1 7
7 12 | 5.0
3.0 | n/a
n/a | n/a
n/a
n/a
n/a | n/a
n/a
n/a
n/a | n/a
n/a | n/a
n/a | n/a | n/a
n/a
n/a
n/a |
n/a
n/a
n/a
n/a | n/a
n/a
n/a
n/a | n/a
n/a
n/a
n/a | n/a | n/a | n/a
n/a | n/a
n/a | n/a A-2
n/a A-2
n/a A-2
n/a A-2 | 4(0) | | | | | TP 12 | -26,064990 28,090453 | 1600 2000 400 3314 Slightly moist, brownish yellow, soft to medium dense, intact, clayey sand, residual 0 200 200 - Topsoil - no sampling 200 550 350 3315 Slightly moist, light orange, soft, intact, gravelly sand, imported 550 1100 550 3316 Moist, reddish brown, soft, intact, gravelly clay, residual | | | | | 100 | 100 | 99 | 90 52
81 50 | 30 | 1.33 | 42 | 24 | 34 2 | 3 17
4 9
8 15 | 5.0 | n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a | n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a | | n/a | n/a A-2
n/a A-2
n/a A-2 | 4(0) | | | | | | | 1100 1700 600 3317 Moist, olive, soft, intact, sandy clay, residual 1700 2000 300 3318 Moist, brownish yellow, soft, intact, gravelly clay, residual 0 350 350 - Topsoil - no sampling 350 450 100 3319 Slightly moist, orange, medium dense, intact, gravelly sand, imported | | | | | | 100 | 97 | 76 48 | <u> </u> | 1.12 | 37 | 24 | 39 2 | 2 9 8 10 | 7.0 | n/a | n/a
n/a | n/a
n/a | n/a | n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a
n/a | n/a | n/a | n/a | n/a A-2
n/a A-2 | 4(0) | | | | | TP 13 | -26,060091 28,090406 | 350 450 100 3319 Slightly moist, orange, medium dense, intact, gravelly sand, imported 450 1100 650 3320 Slightly moist, dark brown, medium dense, intact, gravelly sand, residual 1100 1500 400 3321 Slightly moist, reddish brown, soft to medium dense, intact, clayey gravelly sand, residual 1500 2000 500 3322 Slightly moist, orange, soft to medium dense, intact, gravelly sity sand, residual | | | | 100 9 | 8 97 | 94
98 | 94 | 82 48
82 51 | 33
27
30
29 | 1.27
1.43
1.38
1.47 | 41
37 | 24
26
26
24 | 33 2
37 2 | 2 8 | 4.0 | n/a
n/a | n/a
n/a
n/a
n/a | n/a
n/a | n/a
n/a | n/a
n/a
n/a
n/a | n/a
n/a | n/a
n/a
n/a
n/a | n/a
n/a
n/a
n/a | n/a
n/a
n/a
n/a | n/a
n/a
n/a
n/a | n/a | n/a | n/a | n/a
n/a | n/a A-2
n/a A-2
n/a A-2
n/a A-2 | 4(0) | - | | | | TP 14 | -26,057117 28,090019 | 0 300 300 - Topsoil - no sampling 300 650 350 3323 Dry, brown, medium dense, intact, sand, imported 650 1100 450 3324 Slightly moist, dark brown, medium dense, intact, gravelly sand, residual 1100 2000 900 3325 Slightly moist, reddish brown, soft to medium dense, intacr, clayey gravelly sand, residual | | | | 100 9 | 8 97 | 96 | 96
92
98 | | 26
20
25 | 1.38
1.81
1.63 | 51 | 25
19
20 | 30 3 | 0 4
1 12
5 16 | 7.0 | n/a | n/a
n/a
n/a | _ | n/a | n/a
n/a
n/a | n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | | n/a
n/a
n/a | n/a | n/a | n/a A-2
n/a A-2
n/a A-2 | 6(0) | | | | | TP 15 & 16 | -26,056061 28,088786 | 0 300 300 3328 Dry, light brown, soft, intact, sandy gravel, imported 300 800 500 3329 Slightly moist, brownish red, medium dense, intact, gravelly sand, imported 800 1200 400 3330 Slightly moist, brown, medium dense, intact, sandy gravel, imported | | | | 100 9 | 8 88
4 90
6 92 | 83
88
89 | 70
81
77 | 59 37
74 46
71 43 | 21
26
25 | 1.83
1.54
1.61 | 38
38
39 | 26
27
26 | 36 2
35 2
35 2 | 3 11
4 9
3 10 | 5.0
5.0
5.0 | n/a
n/a
n/a n/a A-2
n/a A-2
n/a A-2 | 6(0)
4(0)
4(0) | | | | | TP 17 | -26,056390 28,085654 | 1200 2000 800 3331 Slightly moist, orange, medium dense, intact, clayey silt, residual 0 200 200 - Topsoil - no sampling 200 850 650 3326 Slightly moist, reddish - brown orange, medium dense, intact, gravelly sand, imported 850 200 -650 3327 Slightly moist, greyish brown, medium dense, intact, gravelly silty sand, imported | | | | 100 9 | | 92 | | 74 40 | 23 22 | 1.64 | 46 | 23 24 | 31 2 | | 4.0 | n/a | n/a
n/a
n/a | | n/a | n/a
n/a
n/a | ' | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a
n/a
n/a | n/a | | n/a | n/a A-2 n/a A-2 n/a A-2 | 4(0) | | | | | TP 18 | -26,049795 28,085837 | 0 300 300 - Topsoil - no sampling 300 2000 1700 3333 Slightly moist, light orange yellow, medium dense, intact, gravelly sand, residual | | | | | 100 | 99 | 95 | 82 45 | 27 | 1.46 | 45 | 22 | 33 3 | 1 13 | 7.0 | n/a A-2 | 6(0) | | | | SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299 Fax Email: martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 **MENLO PARK** 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref : PL/45743 Our Ref Date Reported : 14.10.2021 ### SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | SAMPLE NO. | A21/3280 | A21/3281 | A21/3282 | Preparation Method | |-----------------------------|-----------------|------------|------------|--------------------| | HOLE NO. | TP1 | TP1 | TP1 | | | ROAD NO. | 1 ** * | | 1 | | | DEPTH | 400-700 | 700-900 | 900-2000 | | | CHAINAGE | 400-700 | 700-900 | 900-2000 | | | | | 1 | | | | LAYER TYPE | | | | | | STABILISED WITH | Natural | Natural | Natural | | | SUPPLIER | | | | | | CURING METHOD | | | | | | DATE TESTED | 04.10.2021 | 04.10.2021 | 04.10.2021 | | | DESCRIPTION | Light brown | Orange | Orange | - Specification | | | | o ranigo | o range | COTO:2020 | | CIEVE ANALYGIO (9/ PAGGING) | | | | | | SIEVE ANALYSIS (% PASSING) | | | | | | 100.0 mm | | | | | | 75.00 mm | | | | | | 63.00 mm | None management | | | | | 50.00 mm | 100 | | | | | 37.50 mm | 92 | | 100 | | | 28.00 mm | 88 | 1 | 97 | | | 20.00 mm | 82 | 100 | 96 | | | 14.00 mm | 76 | 98 | 95 | | | 5.000 mm | 57 | 96 | 93 | | | | | | | | | 2.000 mm | 44 | 76 | 76 | | | 0.425 mm | 30 | 53 | 50 | | | 0.075 mm | 19 | 35 | 33 | | | SOIL MORTAR | | | | | | COARSE SAND <2.0mm >0.425mm | 1 31 | 30 | 34 | | | FINE SAND <0.425mm >0.475mm | 26 | 23 | 23 | | | MATERIAL <0.075mm | 43 | | | | | | 43 | 47 | 43 | | | CONSTANTS | | | | | | GRADING MODULUS | 2.06 | 1.36 | 1.41 | | | PRA CLASSIFICATION | A-2-6(0) | A-7-6(2) | A-2-6(2) | | | LIQUID LIMIT (%) | 35 | 45 | 40 | 1 | | PLASTICITY INDEX (0.425mm) | 16 | 22 | 20 | | | LINEAR SHRINKAGE (%) | 9.0 | 11.0 | 10.0 | | | LINEAR SHAINWAGE (70) | 9.0 | 11.0 | 10.0 | | Remarks: FORM: GR40 4.5.0(SGS)(2021.05.05) SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299 Email: martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 MENLO PARK 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref Our Ref Date Reported : PL/45743a : 14.10.2021 #### SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | | SAMPLE NO.
HOLE NO.
ROAD NO. | A21/3283
TP2 | A21/3284
TP2 | | Preparation Method: | |-----|--|---------------------------|----------------------|----------|---------------------| | | DEPTH
CHAINAGE | 500-1100 | 1100-2000 | | | | | LAYER TYPE
STABILISED WITH
SUPPLIER | Natural | Natural | | | | | CURING METHOD DATE TESTED DESCRIPTION | 04.10.2021
Light brown | 04.10.2021
Orange | | - Specification | | | 186,050,000,000 (\$100,000) | Light brown | Grange | | COTO:2020 | | | SIEVE ANALYSIS (% PASSING) | | | | | | | 100.0 mm | | | | | | | 75.00 mm
63.00 mm | | 100 | | | | | 50.00 mm | | 96 | | | | | 37.50 mm | | 92 | | | | | 28.00 mm | | 91 | | | | | 20.00 mm | 100 | 90 | | | | | 14.00 mm | 99 | 88 | | | | | 5.000 mm | 94 | 85 | | | | | 2.000 mm | 87 | 71 | | 2 | | - | 0.425 mm
0.075 mm | 52
29 | 33
19 | | | | l | | 29 | 19 | | | | , | SOIL MORTAR | | | <u> </u> | | | - | COARSE SAND <2.0mm >0.425mm | | 54 | | | | - | FINE SAND <0.425mm >0.075mm | 27 | 19 | | | | Į | MATERIAL <0.075mm | 33 | 27 | | | | | CONSTANTS | | | | | | 1 | GRADING MODULUS | 1.32 | 1.77 | | | | 1 | PRA CLASSIFICATION | A-2-4(0) | A-2-4(0) | | | | | LIQUID LIMIT (%) | 22 | 29 | | | | | PLASTICITY INDEX (0.425mm)
LINEAR SHRINKAGE (%) | 8
3.0 | 10
5.0 | | | | - 1 | LITTLY II COLITION TOL (70) | 0.0 | 0.0 | | | Remarks: FORM: GR40 4.5.0(SGS)(2021.05.05) SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel.: (012) 800 1299 Fax: Email: martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 MENLO PARK 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref : PL/45742b Our Ref Date Reported : 14.10.2021 #### SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | SAMPLE NO.
HOLE NO. | A21/3285
TP3 | A21/3286
TP3 | A21/3287 | Preparation Method: | |--|-----------------|------------------|----------------|---------------------| | ROAD NO. | 1173 | 1173 | TP3 | | | DEPTH | 300-800 | 800-1100 | 1100-2000 | | | CHAINAGE | | | | | | LAYER TYPE
STABILISED WITH | Natural | Natural | Netural | | | SUPPLIER | ivaturai | Naturai | Natural | | | CURING METHOD | | | | | | DATE TESTED | 04.10.2021 | 04.10.2021 | 04.10.2021 | | | DESCRIPTION | Light brown | Orange | Orange | - Specification | | | | | | COTO:2020 | | SIEVE ANALYSIS (% PASSING) | | | | | | 100.0 mm | | | | | | 75.00 mm
63.00 mm | | | | | | 50.00 mm | | | | | | 37.50 mm | | 100 | | | | 28.00 mm | | 96 | | | | 20.00 mm | 52 | 93 | | | | 14.00 mm | 100 | 86 | 100 | | | 5.000 mm | 99
 67 | 99 | | | 2.000 mm | 93 | 48 | 84 | | | 0.425 mm
0.075 mm | 60
36 | 34
22 | 48
31 | | | 717.7.11111 | 30 | 22 | 31 | | | SOIL MORTAR | 0.5 | T | | | | COARSE SAND <2.0mm >0.425mm
FINE SAND <0.425mm >0.075mm | | 28 | 43 | | | MATERIAL <0.075mm | 26
39 | 26
46 | 21
36 | | | | 39 | 40 | 30 | | | CONSTANTS | | | | | | GRADING MODULUS PRA CLASSIFICATION | 1.12
A-6(1) | 1.95
A-2-6(1) | 1.37 | | | LIQUID LIMIT (%) | 28 | 39 | A-2-6(1)
40 | | | PLASTICITY INDEX (0.425mm) | 13 | 21 | 18 | | | LINEAR SHRINKAGE (%) | 6.0 | 10.0 | 9.0 | | | | | | |
 | | K | er | n | а | ri | (8 | 6 | : | |---|----|---|---|----|----|---|---| | _ | _ | _ | _ | _ | _ | _ | _ | FORM: GR40 4.5.0(SGS)(2021.05.05) SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. Fax : (012) 800 1299 Email: martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 MENLO PARK 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref Our Ref : PL/45743c Date Reported : 14.10.2021 #### SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | SAMPLE NO.
HOLE NO. | A21/3288
TP4 | A21/3289
TP4 | A21/3290
TP4 | Preparation Method | |---|-------------------------------------|------------------------------------|------------------------------------|------------------------------| | ROAD NO.
DEPTH
CHAINAGE | 200-800 | 800-1000 | 1000-1400 | | | LAYER TYPE
STABILISED WITH
SUPPLIER | Natural | Natural | Natural | | | CURING METHOD
DATE TESTED
DESCRIPTION | 04.10.2021
Light brown | 04.10.2021
Light grey | 04.10.2021
Orange yellow | - Specification
COTO:2020 | | SIEVE ANALYSIS (% PASSING) | | • | | | | 100.0 mm
75.00 mm
63.00 mm
50.00 mm | | 100 | 100 | | | 37.50 mm
28.00 mm
20.00 mm | | 97
93
84 | 64
47
39 | | | 14.00 mm
5.000 mm
2.000 mm | 100
97 | 80
72
66 | 35
23
19 | | | 0.425 mm
0.075 mm | 55
33 | 36
20 | 11 6 | | | SOIL MORTAR | | | | | | COARSE SAND <2.0mm >0.425mn
FINE SAND <0.425mm >0.075mm
MATERIAL <0.075mm | 1 44
 23
 33 | 45
26
29 | 43
25
32 | | | CONSTANTS | | | | | | GRADING MODULUS
PRA CLASSIFICATION
LIQUID LIMIT (%)
PLASTICITY INDEX (0.425mm)
LINEAR SHRINKAGE (%) | 1.16
A-2-6(0)
25
11
6.0 | 1.78
A-1-b(0)
18
6
3.0 | 2.64
A-2-4(0)
19
7
4.0 | | Remarks: FORM: GR40 4.5.0(SGS)(2021.05.05) Technical Signatory: Marthus Schwartz/Sunil Dewnath MATROLAB IS NOW PART OF SGS, THE WORLDS'S LEADING INSPECTION, VERFICATION, TESTING AND CERTIFICATION COMPANY. This document is issued by the Company under its General Condition of Service accessible at http://www.sas.com/en/Terms and Conditions,asax Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299 Fax Email: martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 MENLO PARK 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref Our Ref : PL/45743d : 18.10.2021 Date Reported ### SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | SAMPLE NO.
HOLE NO. | A21/3291
TP5 | A21/3292
TP5 | A21/3293
TP5 | Pro | eparation Method: | |-----------------------------|-----------------|-----------------|-----------------|-----|-------------------| | ROAD NO. DEPTH | 800-1400 | 1400-1700 | 1700-2200 | | | | CHAINAGE | 000-1400 | 1400-1700 | 1700-2200 | | | | LAYER TYPE | | 20.2 | | | | | STABILISED WITH SUPPLIER | Natural | Natural | Natural | | | | CURING METHOD | | | | | | | DATE TESTED | 04.10.2021 | 04.10.2021 | 04.10.2021 | | Specification | | DESCRIPTION | Light brown | Orange | Light grey | 1 - | COTO:2020 | | SIEVE ANALYSIS (% PASSING) | | | | | | | 100.0 mm | | | | | | | 75.00 mm | | | | | | | 63.00 mm | | | | | | | 50.00 mm | | | | | | | 37.50 mm | | 100 | | | | | 28.00 mm
20.00 mm | 100 | 97 | | | | | 14.00 mm | 99 | 95 | | | | | 5.000 mm | 99 | 89 | 100 | | | | 2.000 mm | 98 | 82 | 99 | | | | 0.425 mm | 50 | 47 | 51 | | | | 0.075 mm | 29 | 26 | 28 | | | | SOIL MORTAR | | | L | | | | COARSE SAND <2.0mm >0.425mn | | 43 | 49 | | | | FINE SAND <0.425mm >0.075mm | | 25 | 23 | | | | MATERIAL <0.075mm | 29 | 32 | 28 | | | | CONSTANTS | | | | | | | GRADING MODULUS | 1.24 | 1.45 | 1.22 | | | | PRA CLASSIFICATION | A-2-6(0) | A-2-4(0) | A-2-4(0) | | | | LIQUID LIMIT (%) | 24 | 21 | 23 | | | | PLASTICITY INDEX (0.425mm) | 11 | 7 | 6 | | | | LINEAR SHRINKAGE (%) | 5.0 | 4.0 | 3.0 | | | | Remarks : | | | | | | | | | | |------------|--|--|--|--|--|--|--|--|--| | FORM: GR40 | | | | | | | | | | 4.5.0(SGS)(2021.05.05) SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299 Fax Email: martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 MENLO PARK 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref Our Ref : PL/45743e Date Reported : 18.10.2021 ### SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | SAMPLE NO. | A21/3294 | A21/3295 | A21/3296 | A21/3297 | Preparation Method: | |-----------------------------|-------------|------------|-------------|------------|---------------------| | HOLE NO. | TP6 | TP6 | TP6 | TP6 | | | ROAD NO. | | | | | | | DEPTH | 150-300 | 300-700 | 700-1100 | 1100-1350 | | | CHAINAGE | | | | | | | LAYER TYPE | Material | Matural | National | National | | | STABILISED WITH SUPPLIER | Natural | Natural | Natural | Natural | | | CURING METHOD | | | | | | | DATE TESTED | 04.10.2021 | 04.10.2021 | 04.10.2021 | 04.10.2021 | | | DESCRIPTION | Light brown | Orange | Light brown | Orange | - Specification | | BEGGIAII FIGIT | Light brown | Orango | Light brown | Orango | COTO:2020 | | SIEVE ANALYSIS (% PASSING) | | | | | | | 100.0 mm | | T | I | I | | | 75.00 mm | | | | | | | 63.00 mm | | | | | | | 50.00 mm | | | | 100 | | | 37.50 mm | | | | 98 | 1 | | 28.00 mm | | | 100 | 89 | | | 20.00 mm | 100 | | 97 | 79 | | | 14.00 mm | 98 | 100 | 95 | 70 | | | 5.000 mm | 95 | 95 | 89 | 50 | 1 | | 2.000 mm | 85 | 85 | 85 | 40 | | | 0.425 mm
0.075 mm | 47
27 | 52
30 | 52
30 | 25
16 | | | | 21 | 30 | 30 | 10 | | | SOIL MORTAR | | , | | | | | COARSE SAND <2.0mm >0.425mn | | 39 | 39 | 36 | | | FINE SAND <0.425mm >0.075mm | | 25 | 25 | 24 | | | MATERIAL <0.075mm | 31 | 36 | 36 | 40 | | | CONSTANTS | | | | | | | GRADING MODULUS | 1.41 | 1.33 | 1.33 | 2.20 | | | PRA CLASSIFICATION | A-2-6(0) | A-2-4(0) | A-2-6(0) | A-2-6(0) | | | LIQUID LIMIT (%) | 25 | 26 | 26 | 32 | | | PLASTICITY INDEX (0.425mm) | 11 | 10 | 11 | 15 | | | LINEAR SHRINKAGE (%) | 5.0 | 5.0 | 5.0 | 8.0 | | | Rer | nar | KS | : | |-----|-----|----|---| | _ | _ | | | FORM: GR40 4.5.0(SGS)(2021.05.05) SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299 Fax : Email: martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 MENLO PARK 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref Our Ref : PL/45743f Date Reported : 18.10.2021 ### SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | SAMPLE NO. HOLE NO. ROAD NO. DEPTH CHAINAGE LAYER TYPE STABILISED WITH SUPPLIER CURING METHOD DATE TESTED | A21/3298
TP6
1350-2000
Natural | | | Preparation Method: | |--|---|----------|--|---------------------| | DESCRIPTION | Orange | | | COTO:2020 | | SIEVE ANALYSIS (% PASSING) | | | | | | 100.0 mm
75.00 mm
63.00 mm
50.00 mm
37.50 mm
28.00 mm
20.00 mm
14.00 mm
5.000 mm
2.000 mm
0.425 mm
0.075 mm | 100
97
75
49
32 | | | | | SOIL MORTAR COARSE SAND <2.0mm >0.425mm | 1 35 | <u> </u> | | T | | FINE SAND <0.425mm >0.425mm
MATERIAL <0.075mm | | | | | | CONSTANTS | | | | | | GRADING MODULUS PRA CLASSIFICATION LIQUID LIMIT (%) PLASTICITY INDEX (0.425mm) LINEAR SHRINKAGE (%) | 1.43
A-2-7(2)
42
20
10.0 | | | | | Remarks :
FORM: GR40 | A | | |-------------------------|--|--| | 4.5.0(SGS)(2021.05.05) | Technical Signatory : Martinus Schwartz/Lizette Breiting | | SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299 Email: martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 MENLO PARK 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref Our Ref Date Reported : PL/45743g : 18.10.2021 SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | | | , | | | |-----------------------------|--------------|------------|---------------------------------------|---------------------| | SAMPLE NO. | A21/3299 | A21/3300 | A21/3301 | Preparation Method: | | HOLE NO. | TP7 | TP7 | TP7 | | | ROAD NO. | 1 22 2 | 2.5 | 1 24 4 | 1 | | DEPTH | 150-800 | 800-1800 | 1800-2000 | 1 | | CHAINAGE |
100 000 | 000 1000 | 1000-2000 | 1 | | LAYER TYPE | | | | | | STABILISED WITH | Natural | Natural | Natural | 1 | | SUPPLIER | ivaturai | Naturai | Naturai | 1 | | | | | | 1 | | CURING METHOD | | | | 1 | | DATE TESTED | 04.10.2021 | 04.10.2021 | 04.10.2021 | 0 16 11 | | DESCRIPTION | Light orange | Orange | Orange | - Specification | | | *** | 20047 | 5407 | COTO:2020 | | SIEVE ANALYSIS (% PASSING) | | | | | | 100.0 mm | | | | | | 75.00 mm | | | | | | 63.00 mm | 1 | | | 1 | | 50.00 mm | 1 | | | | | 37.50 mm | 1 | | | 1 | | 28.00 mm | | | | | | | 100 | 100 | | 1 | | 20.00 mm | 100 | 100 | 100 | | | 14.00 mm | 94 | 99 | 100 | 1 | | 5.000 mm | 79 | 98 | 99 | | | 2.000 mm | 61 | 87 | 87 | | | 0.425 mm | 28 | 57 | 52 | | | 0.075 mm | 16 | 34 | 32 | | | SOIL MORTAR | | | · · · · · · · · · · · · · · · · · · · | | | COARSE SAND <2.0mm >0.425mm | n 54 | 34 | 40 | | | FINE SAND <0.425mm >0.075mm | | 26 | 24 | | | MATERIAL <0.075mm | 26 | 40 | 36 | | | | 20 | 40 | 30 | | | CONSTANTS | Υ | | | · | | GRADING MODULUS | 1.94 | 1.22 | 1.28 | | | PRA CLASSIFICATION | A-2-4(0) | A-2-6(0) | A-2-6(1) | | | LIQUID LIMIT (%) | 28 | 33 | 33 | | | PLASTICITY INDEX (0.425mm) | 8 | 12 | 17 | | | LINEAR SHRINKAGE (%) | 4.0 | 7.0 | 7.0 | | Remarks: FORM: GR40 4.5.0(SGS)(2021.05.05) SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299 Tel. Fax Email: martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 MENLO PARK 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref Our Ref : PL/45743h Date Reported : 18.10.2021 #### SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | SAMPLE NO.
HOLE NO. | A21/3302
TP8 | A21/3303
TP8 | | Preparation Method: | |--|----------------------|----------------------------|------|---------------------| | ROAD NO. DEPTH | 100-300 | 300-400 | | | | CHAINAGE
LAYER TYPE | 100 000 | 000 400 | | | | STABILISED WITH SUPPLIER | Natural | Natural | | | | CURING METHOD | 04.40.0004 | 04.40.0004 | | | | DATE TESTED DESCRIPTION | 04.10.2021
Orange | 04.10.2021
Light orange | | - Specification | | | | 0.00 | | COTO:2020 | | SIEVE ANALYSIS (% PASSING) | , | |
 | | | 100.0 mm | | | | | | 75.00 mm | | | | | | 63.00 mm
50.00 mm | | | | | | 37.50 mm | | | | | | 28.00 mm | | | | | | 20.00 mm | 100 | | | | | 14.00 mm | 99 | 100 | | | | 5.000 mm | 97 | 88 | | | | 2.000 mm | 85 | 69 | | | | 0.425 mm | 51 | 33 | | | | 0.075 mm | 31 | 18 | | | | SOIL MORTAR | | | | | | COARSE SAND <2.0mm >0.425mn | | 52 | | | | FINE SAND <0.425mm >0.075mm | | 21 | | | | MATERIAL <0.075mm | 37 | 27 | 5. | | | CONSTANTS | | |
 | | | GRADING MODULUS | 1.33 | 1.80 | | | | PRA CLASSIFICATION | A-2-6(0) | A-1-b(0) | | | | LIQUID LIMIT (%) | 30 | 30 | | | | PLASTICITY INDEX (0.425mm)
LINEAR SHRINKAGE (%) | 13
7.0 | 6
3.0 | | | | LINEAR SHRINKAGE (70) | 7.0 | 3.0 | | | Remarks: FORM: GR40 4.5.0(SGS)(2021.05.05) SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299 Fax Email : martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 MENLO PARK 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref Our Ref : PL/45743i Date Reported : 18.10.2021 ### SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | SAMPLE NO.
HOLE NO. | A21/3304
TP9 | A21/3305
TP9 | A21/3306
TP9 | Preparation Method: | |--|-----------------|-----------------|-----------------|------------------------------| | ROAD NO. | 507 500 | | 30.000 | | | DEPTH | 200-350 | 350-600 | 600-1200 | | | CHAINAGE | | | | | | LAYER TYPE
STABILISED WITH | Natural | Natural | Natural | | | SUPPLIER | Ivaturai | Ivaturai | Natural | | | CURING METHOD | | | | | | DATE TESTED | 04.10.2021 | 04.10.2021 | 04.10.2021 | 0 15 11 | | DESCRIPTION | Orange | Orange | Pale red | - Specification
COTO:2020 | | | | | | CO10.2020 | | SIEVE ANALYSIS (% PASSING) | | | | | | 100.0 mm | | | | | | 75.00 mm | | | | | | 63.00 mm | | | | | | 50.00 mm
37.50 mm | | | | | | 28.00 mm | | | | | | 20.00 mm | 100 | 100 | | | | 14.00 mm | 99 | 99 | 100 | | | 5.000 mm | 95 | 90 | 98 | | | 2.000 mm | 83 | 73 | 82 | | | 0.425 mm | 49
30 | 38 | 46
25 | | | 0.075 mm | 30 | 22 | 25 | | | SOIL MORTAR | | · | | | | COARSE SAND <2.0mm >0.425mm | | 48 | 44 | | | FINE SAND <0.425mm >0.075mm | | 22 | 27 | | | MATERIAL <0.075mm | 36 | 30 | 29 | | | CONSTANTS | | | <u> </u> | | | GRADING MODULUS | 1.38 | 1.68 | 1.47 | | | PRA CLASSIFICATION | A-2-6(0) | A-2-4(0) | A-1-b(0) | | | LIQUID LIMIT (%) | 31
13 | 26
9 | 18 | | | PLASTICITY INDEX (0.425mm)
LINEAR SHRINKAGE (%) | 7.0 | 5.0 | 2.0 | | | LINEAR OF MININAGE (70) | 7.0 | 5.0 | 2.0 | | | Remarks : | | | | | |-----------|------|--|--|--| | FORM: | GR40 | | | | 4.5.0(SGS)(2021.05.05) SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299 Fax Email: martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 MENLO PARK 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref Our Ref : PL/45743j Date Reported : 18.10.2021 ### SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | SAMPLE NO.
HOLE NO. | A21/3307
TP10 | A21/3308
TP10 | A21/3309
TP10 | Preparation Method: | |-------------------------------|------------------|------------------|------------------|---------------------| | ROAD NO. DEPTH | 300-600 | 600-800 | 800-1200 | | | CHAINAGE | 000 000 | 000 000 | 000 1200 | | | LAYER TYPE
STABILISED WITH | Natural | Natural | Natural | | | SUPPLIER | Naturai | Naturai | Ivaturai | | | CURING METHOD DATE TESTED | 05.10.2021 | 05.10.2021 | 05.10.2021 | | | DESCRIPTION | Orange | Light orange | Orange | - Specification | | 20-04-000 (CC 200-02-0) | | 0 0 | 3 | COTO:2020 | | SIEVE ANALYSIS (% PASSING) | | | , | | | 100.0 mm
75.00 mm | | | | | | 63.00 mm | | | | | | 50.00 mm | | | | | | 37.50 mm | | | | | | 28.00 mm | 400 | 100 | | | | 20.00 mm | 100 | 100 | 100 | | | 14.00 mm
5.000 mm | 99
95 | 99
94 | 100
98 | | | 2.000 mm | 83 | 81 | 84 | | | 0.425 mm | 50 | 45 | 51 | 1 | | 0.075 mm | 30 | 26 | 31 | | | SOIL MORTAR | | | · | | | COARSE SAND <2.0mm >0.425mn | n 40 | 44 | 40 | | | FINE SAND <0.425mm >0.075mm | | 24 | 23 | 1 | | MATERIAL <0.075mm | 36 | 32 | 37 | | | CONSTANTS | | | | | | GRADING MODULUS | 1.37 | 1.48 | 1.35 | | | PRA CLASSIFICATION | A-2-4(0) | A-2-6(0) | A-2-6(1) | | | LIQUID LIMIT (%) | 26 | 26 | 33 | | | PLASTICITY INDEX (0.425mm) | 10 | 11 | 14 | | | LINEAR SHRINKAGE (%) | 6.0 | 5.0 | 7.0 | | Remarks: FORM: GR40 4.5.0(SGS)(2021.05.05) SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299 Tel. Fax : martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 MENLO PARK 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref Our Ref : PL/45743k Date Reported : 18.10.2021 ### SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | SAMPLE NO. | A21/3310 | A21/3311 | A21/3312 | A21/3313 | Preparation Method: | |--|------------|------------|------------|--------------|---------------------| | HOLE NO. | TP11 | TP11 | TP11 | TP11 | | |
ROAD NO. | 1 | | 11 11 | | 1 | | DEPTH | 200-400 | 400-700 | 700-1100 | 1100-1600 | 1 | | CHAINAGE | 200-400 | 400-700 | 700-1100 | 1100-1000 | 1 | | LAYER TYPE | | | 1 | | 1 | | STABILISED WITH | Natural | Natural | Natural | Natural | 1 1 | | SUPPLIER | Naturai | Maturai | Naturai | INALUIAI | 1 | | | | | 1 | 1 | 1 | | CURING METHOD | 05 40 2024 | 05 10 2021 | 05 10 2021 | 05.10.2021 | 1 | | DATE TESTED | 05.10.2021 | 05.10.2021 | 05.10.2021 | | - Specification | | DESCRIPTION | Orange | Orange | Dark brown | Yellow brown | COTO:2020 | | | | | | | 0010.2020 | | SIEVE ANALYSIS (% PASSING) | | | | | | | 100.0 mm | | | | | | | 75.00 mm | | | | | 1 | | 63.00 mm | | | 1 | | 1 | | 50.00 mm | | | | | 1 | | 37.50 mm | | | 1 | 1 | 1 | | 28.00 mm | | | 1 | | | | 20.00 mm | | 100 | 1 | 1 | 1 | | 14.00 mm | 100 | 99 | 100 | 100 | 1 | | 5.000 mm | 95 | 91 | 99 | 99 | 1 | | 2.000 mm | 81 | 74 | 94 | 89 | 1 | | 0.425 mm | 48 | 38 | 57 | 58 | | | 0.075 mm | 29 | 22 | 31 | 34 | | | SOIL MORTAR | | | | | | | COARSE SAND <2.0mm >0.425mm | n 41 | 49 | 40 | 35 | | | FINE SAND <0.425mm >0.075mm | | 22 | 27 | 27 | | | | 35 | 29 | 33 | 38 | | | MATERIAL <0.075mm | 35 | 29 | 33 | 30 | | | CONSTANTS | | | | | | | GRADING MODULUS | 1.43 | 1.67 | 1.18 | 1.18 | | | PRA CLASSIFICATION | A-2-6(0) | A-2-4(0) | A-2-4(0) | A-2-6(0) | | | LIQUID LIMIT (%) | 29 | 27 | 21 | 27 | | | PLASTICITY INDEX (0.425mm) | 12 | 9 | 7 | 12 | | | LINEAR SHRINKAGE (%) | 6.0 | 5.0 | 3.0 | 6.0 | | | A second control of the th | | 299 | L | 1 | | Remarks: FORM: GR40 4.5.0(SGS)(2021.05.05) SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387,Silverton,0127 Tel. : (012) 800 1299 Fax Email : martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 MENLO PARK 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref Our Ref : PL/45743I Date Reported : 18.10.2021 ### SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | SAMPLE NO.
HOLE NO. | A21/3314
TP11 | | Preparation Method: | |-----------------------------|--|--|---------------------| | ROAD NO. | | | | | DEPTH | 1600-2000 | | | | CHAINAGE | and the second of o | | | | LAYER TYPE | 600m2 7500 | | | | STABILISED WITH | Natural | | | | SUPPLIER | | | | | CURING METHOD | 05 40 0004 | | | | DATE TESTED DESCRIPTION | 05.10.2021 | | - Specification | | DESCRIPTION | Brown yellow | | COTO:2020 | | | | | 0010.2020 | | SIEVE ANALYSIS (% PASSING) | T | | | | 100.0 mm | | | | | 75.00 mm | | | | | 63.00 mm
50.00 mm | | | | | 37.50 mm | | | | | 28.00 mm | | | | | 20.00 mm | | | | | 14.00 mm | 100 | | | | 5.000 mm | 97 | | | | 2.000 mm | 84 | | | | 0.425 mm | 51 | | | | 0.075 mm | 32 | | | | SOIL MORTAR | | | | | COARSE SAND <2.0mm >0.425mn | n 39 | | | | FINE SAND <0.425mm >0.075mm | | | | | MATERIAL <0.075mm | 38 | | | | CONSTANTS | | | | | GRADING MODULUS | 1.33 | | | | PRA CLASSIFICATION | A-2-6(1) | | | | LIQUID LIMIT (%) | 33 | | | | PLASTICITY INDEX (0.425mm) | 17 | | | | LINEAR SHRINKAGE (%) | 8.0 | | | | Remarks : | |------------| | FORM: GR40 | 4.5.0(SGS)(2021.05.05) SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299 Fax Email: martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 MENLO PARK 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref Our Ref : PL/45743m Date Reported : 18.10.2021 #### SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | SAMPLE NO.
HOLE NO. | A21/3315
TP12 | A21/3316
TP12 | A21/3317
TP12 | A21/3318
TP12 | Preparation Method: | |-----------------------------|------------------|------------------|------------------|------------------|------------------------------| | ROAD NO. | | | | | | | DEPTH
CHAINAGE | 200-550 | 550-1100 | 1100-1700 | 1700-2000 | | | LAYER TYPE | | | | | | | STABILISED WITH | Natural | Natural | Natural | Natural | | | SUPPLIER CURING METHOD | | | | | | | DATE TESTED | 05.10.2021 | 05.10.2021 | 05.10.2021 | 05.10.2021 | Charification | | DESCRIPTION | Light orange | Red brown | Olive | Brown yellow | - Specification
COTO:2020 | | SIEVE ANALYSIS (% PASSING) | | | | | | | 100.0 mm | | | | | | | 75.00 mm
63.00 mm | | | | | | | 50.00 mm | | | | | | | 37.50 mm | | | | | | | 28.00 mm | | | | | | | 20.00 mm | | 100 | | | | | 14.00 mm | 100 | 99 | 100 | 100 | | | 5.000 mm | 99 | 95 | 99 | 97 | | | 2.000 mm | 90 | 81 | 93 | 76 | | | 0.425 mm | 52
30 | 50
30 | 60
34 | 48
29 | | | 0.075 mm | 30 | 30 | 34 | 29 | | | SOIL MORTAR | | | T | | T | | COARSE SAND <2.0mm >0.425mm | | 39 | 35 | 37 | | | FINE SAND <0.425mm >0.075mm | 24 | 24 | 29 | 24 | | | MATERIAL <0.075mm | 34 | 37 | 36 | 39 | | | CONSTANTS | | | • | | | | GRADING MODULUS | 1.28 | 1.39 | 1.12 | 1.47 | | | PRA CLASSIFICATION | A-2-4(0) | A-2-6(1) | A-2-4(0) | A-2-4(0) | | | LIQUID LIMIT (%) | 24 | 28 | 22 | 28 | | | PLASTICITY INDEX (0.425mm) | 9
5.0 | 15
7.0 | 9 | 10
7.0 | | | LINEAR SHRINKAGE (%) | 5.0 | 7.0 | 4.0 | 7.0 | | Remarks FORM: GR40 4.5.0(SGS)(2021.05.05) SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 : (012) 800 1299 Tel. Fax Email: martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 MENLO PARK 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref Our Ref : PL/45743n Date Reported : 18.10.2021 #### SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | SAMPLE NO.
HOLE NO.
ROAD NO. | A21/3319
TP13 | A21/3320
TP13 | A21/3321
TP13 | A21/3322
TP13 | Preparation Method: | |--|-------------------------------------|---|-------------------------------------|-------------------------------------|------------------------------| | DEPTH
CHAINAGE | 350-450 | 450-1100 | 1100-1500 | 1500-2000 | | | LAYER TYPE
STABILISED WITH
SUPPLIER | Natural | Natural | Natural | Natural | | | CURING METHOD
DATE TESTED
DESCRIPTION | 05.10.2021
Orange | 05.10.2021
Dark brown | 05.10.2021
Red brown | 05.10.2021
Orange | - Specification
COTO:2020 | | SIEVE ANALYSIS (% PASSING) | | | | | | | 100.0 mm
75.00 mm
63.00 mm
50.00 mm
37.50 mm
28.00 mm
20.00 mm
14.00 mm
5.000 mm
2.000 mm | 100
97
87
54
33 | 100
98
97
94
89
82
48
27 | 100
98
94
82
51
30 | 100
99
93
73
41
25 | | | 0.075 mm | 33 | 21 | 30 | 25 | | | SOIL MORTAR COARSE SAND <2.0mm >0.425mm | า 38 | 41 | 37 | 44 | 1 | | FINE SAND <0.425mm >0.425mm
MATERIAL <0.075mm | | 26
33 | 26
37 | 22
34 | | | CONSTANTS | | | | | | | GRADING MODULUS PRA CLASSIFICATION LIQUID LIMIT (%) PLASTICITY INDEX (0.425mm) LINEAR SHRINKAGE (%) | 1.27
A-2-6(1)
31
13
7.0 | 1.43
A-2-4(0)
22
8
4.0 | 1.38
A-2-4(0)
25
10
5.0 | 1.61
A-2-6(0)
33
13
7.0 | | Remarks: FORM: GR40 4.5.0(SGS)(2021.05.05) SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.; 2003/021980/07 - VAT. Reg.No.; 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299 Tel. Fax Email: martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 MENLO PARK 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref Our Ref :
PL/45743o Date Reported : 18.10.2021 ### SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | SAMPLE NO.
HOLE NO. | A21/3323
TP14 | A21/3324
TP14 | A21/3325
TP14 | | Preparation Method | |--|------------------|------------------|------------------|---|--------------------| | ROAD NO.
DEPTH | 300-650 | 650-1100 | 1100-2000 | | | | CHAINAGE
LAYER TYPE | | | | | | | STABILISED WITH
SUPPLIER | Natural | Natural | Natural | | | | CURING METHOD DATE TESTED | 05.10.2021 | 05.10.2021 | 05.10.2021 | | - Specification | | DESCRIPTION | Brown yellow | Orange | Orange | | COTO:2020 | | SIEVE ANALYSIS (% PASSING) | | | | | | | 100.0 mm | | | | | | | 75.00 mm | | | | | | | 63.00 mm | | | | | | | 37.50 mm | | 100 | | | | | 28.00 mm | | 98 | | | | | 20.00 mm | 100 | 97 | 100 | | | | 14.00 mm | 99 | 96 | 100 | | | | 5.000 mm | 96 | 92 | 98 | | | | 2.000 mm | 89 | 67 | 72 | | | | 0.425 mm | 48 | 33 | 40 | | | | 0.075 mm | 26 | 20 | 25 | | | | SOIL MORTAR | | | | | | | COARSE SAND <2.0mm >0.425mm | | 51 | 45 | | | | FINE SAND <0.425mm >0.075mm | 25 | 19 | 20 | | | | MATERIAL <0.075mm | 29 | 30 | 35 | | | | CONSTANTS | | | | * | | | GRADING MODULUS | 1.38 | 1.81 | 1.63 | | | | PRA CLASSIFICATION | A-2-4(0) | A-2-6(0) | A-2-6(1) | | | | LIQUID LIMIT (%) | 20 | 31 | 35 | | | | PLASTICITY INDEX (0.425mm)
LINEAR SHRINKAGE (%) | 4
2.0 | 12
7.0 | 16 | | | | LINEAR SHRINKAGE (%) | 2.0 | 7.0 | 8.0 | | 1 | | Remarks | ; ; | |---------|-----| | | | FORM: GR40 4.5.0(SGS)(2021.05.05) SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299 Tel. Fax Email: martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 MENLO PARK 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref Our Ref : PL/45743p Date Reported : 18.10.2021 ### SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | SAMPLE NO.
HOLE NO. | A21/3326
TP17 | A21/3327
TP17 | | | Preparation Method: | | |---|------------------|------------------|--|--|---------------------|--| | ROAD NO.
DEPTH | 200-850 | 850-2000 | | | | | | CHAINAGE
LAYER TYPE
STABILISED WITH | Natural | Natural | | | | | | SUPPLIER CURING METHOD | INatural | Naturai | | | | | | DATE TESTED | 05.10.2021 | 05.10.2021 | | | - Specification | | | DESCRIPTION | Red brown orange | Grey brown | | | COTO:2020 | | | SIEVE ANALYSIS (% PASSING) | | | | | | | | 100.0 mm
75.00 mm | | | | | | | | 63.00 mm | | | | | | | | 50.00 mm | | | | | | | | 37.50 mm | 100 | 100 | | | | | | 28.00 mm | 98 | 98 | | | | | | 20.00 mm | 93 | 95 | | | | | | 14.00 mm | 92 | 93 | | | | | | 5.000 mm | 85 | 84 | | | | | | 2.000 mm | 74 | 71 | | | | | | 0.425 mm | 40 | 39 | | | | | | 0.075 mm | 23 | 22 | | | | | | SOIL MORTAR | | | | | | | | COARSE SAND <2.0mm >0.425mm | | 45 | | | | | | FINE SAND <0.425mm >0.075mm | | 24 | | | | | | MATERIAL <0.075mm | 31 | 31 | | | | | | CONSTANTS | | | | | | | | GRADING MODULUS | 1.64 | 1.68 | | | | | | PRA CLASSIFICATION | A-2-4(0) | A-2-4(0) | | | | | | LIQUID LIMIT (%) | 26 | 25 | | | | | | PLASTICITY INDEX (0.425mm) | 8 | 8 | | | | | | LINEAR SHRINKAGE (%) | 4.0 | 4.0 | | | | | | Remarks : | | | | |------------|--|--|--| | FORM: GR40 | | | | 4.5.0(SGS)(2021.05.05) SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299 Tel. Fax : martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 **MENLO PARK** 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref Our Ref : PL/45743q Date Reported : 18.10.2021 ### SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | SAMPLE NO. | A21/3328 | A21/3329 | A21/3330 | A21/3331 | Preparation Method | | |-----------------------------|-------------|-------------|------------|------------|---------------------|--| | HOLE NO. | TP15 & 16 | TP15 & 16 | TP15 & 16 | TP15 & 16 | 1 Toparation Wothou | | | ROAD NO. | 1 | 1. 10 0. 10 | 11 10 4 10 | 11 10 4 10 | | | | DEPTH | 0-300 | 300-800 | 800-1200 | 1200-2000 | | | | CHAINAGE | 0-500 | 300-000 | 000-1200 | 1200-2000 | | | | LAYER TYPE | | | | | | | | STABILISED WITH | Natural | Network | N-1 | N-7 | | | | | Naturai | Natural | Natural | Natural | | | | SUPPLIER | | | | | | | | CURING METHOD | | | | | | | | DATE TESTED | 05.10.2021 | 05.10.2021 | 05.10.2021 | 05.10.2021 | | | | DESCRIPTION | Light brown | Brown red | Brown | Orange | - Specification | | | | 32.534 | | | | COTO:2020 | | | SIEVE ANALYSIS (% PASSING) | | | | | | | | 100.0 mm | | | | | | | | 75.00 mm | | | | | | | | 63.00 mm | | | | | | | | 50.00 mm | 100 | | | | | | | 37.50 mm | 99 | 100 | 100 | 400 | | | | | | | 100 | 100 | | | | 28.00 mm | 98 | 94 | 96 | 99 | | | | 20.00 mm | 88 | 90 | 92 | 95 | | | | 14.00 mm | 83 | 88 | 89 | 94 | | | | 5.000 mm | 70 | 81 | 77 | 89 | | | | 2.000 mm | 59 | 74 | 71 | 77 | | | | 0.425 mm | 37 | 46 | 43 | 50 | | | | 0.075 mm | 21 | 26 | 25 | 32 | | | | SOIL MORTAR | | | | | | | | COARSE SAND <2.0mm >0.425mm | 1 38 | 38 | 39 | 35 | | | | FINE SAND <0.425mm >0.075mm | 26 | 27 | 26 | 23 | | | | MATERIAL <0.075mm | 36 | 35 | 35 | 42 | | | | | 30 | 33 | 35 | 42 | | | | CONSTANTS | | | | | | | | GRADING MODULUS | 1.83 | 1.54 | 1.61 | 1.41 | | | | PRA CLASSIFICATION | A-2-6(0) | A-2-4(0) | A-2-4(0) | A-2-6(2) | | | | LIQUID LIMIT (%) | 23 | 24 | 23 | 39 | | | | PLASTICITY INDEX (0.425mm) | 11 | 9 | 10 | 20 | | | | LINEAR SHRINKAGE (%) | 5.0 | 5.0 | 5.0 | 9.0 | | | | | 5.0 | 0.0 | 0.0 | 5.0 | | | Remarks: FORM: GR40 4.5.0(SGS)(2021.05.05) SGS MATROLAB (PTY) LTD - CIVIL ENGINEERING SERVICES -Reg.No.: 2003/021980/07 - VAT. Reg.No.: 4040210587 a SANAS Accredited Testing Laboratory, No. T0025 256 Brander Street, Jan Niemand Park, Pretoria. P.O Box 912387, Silverton, 0127 Tel. : (012) 800 1299 Fax Email: martinus.schwartz@sgs.com ### **TEST RESULTS** NYELETI CONSULTING (PTY)LTD P.O BOX 35158 MENLO PARK 0102 Attention: Yashini Project : Woodmead Water Upgrade Your Ref Our Ref : PL/45743r Date Reported : 18.10.2021 ### SIEVE ANALYSIS, CONSTANTS(SANS 3001:GR1,GR10,GR12) | SAMPLE NO.
HOLE NO. | A21/3332
TP18 | A21/3333
TP18 | | | Preparation Method: | |-----------------------------|--------------------------|-----------------------------------|-----|-----|---------------------| | ROAD NO.
DEPTH | 0-300 | 300-2000 | | | | | CHAINAGE
LAYER TYPE | 0 000 | 000 2000 | | | | | STABILISED WITH | Natural | Natural | 201 | | | | SUPPLIER
CURING METHOD | | | | | | | DATE TESTED DESCRIPTION | 05.10.2021
Dark brown | 05.10.2021
Light orange yellow | | | - Specification | | | Bank Brown | Light ordings yours | | | COTO:2020 | | SIEVE ANALYSIS (% PASSING) | | | | | | | 100.0 mm | | | | | | | 75.00 mm
63.00 mm | | | | | | | 50.00 mm | | | | | | | 37.50 mm | 100 | | | | | | 28.00 mm | 98 | | | | | | 20.00 mm | 96 | 100 | | 1 | | | 14.00 mm | 96 | 99 | | | | | 5.000 mm | 88 | 95 | | | | | 2.000 mm | 74 | 82 | | j j | | | 0.425 mm
0.075 mm | 36
22 | 45
27 | | | | | | 22 | 21 | | | | | SOIL MORTAR | | | | | | | COARSE SAND <2.0mm >0.425mn | | 45 | | | | | FINE SAND <0.425mm >0.075mm | | 22 | | | | | MATERIAL <0.075mm | 30 | 33 | | | | | CONSTANTS | | | | | | | GRADING MODULUS | 1.69 | 1.46 | | | | | PRA CLASSIFICATION | A-2-6(0) | A-2-6(0) | | | | | LIQUID LIMIT (%) | 34 | 31 | | | | | PLASTICITY INDEX (0.425mm) | 15 | 13 | | | | | LINEAR SHRINKAGE (%) | 7.0 | 7.0 | | | | | FORM: GR40 | | |--------------|--| | FURIVI. GR40 | | 4.5.0(SGS)(2021.05.05) ### **WOODMEAD WATER UPGRADING** ## TRAFFIC MANAGEMENT PLAN DRAFT REPORT REV 01 DATE: 30 November 2022 Prepared by: Nyeleti Consulting (Pty) Ltd P O Box 35158 Menlopark 0102 Tel: (012) 361 3629 Fax: (012) 361 3525 #### **DOCUMENT CONTROL SHEET** CLIENT: PROJECT: Woodmead Water Upgrading TMP PROJECT NO.: TITLE: Woodmead Water Upgrading Traffic Management Plan | Date | Document No. | Prepared by | Reviewed and Approved by | |---------------------|-------------------|---|------------------------------------| | 30 November
2022 | 16941-TRD-
R01 | Tintswalo Rikhotso M Tech Eng (Civil). | Sundran Naicker (PR Eng.) Director | | Signatures | | | | ### **CONTACT DETAILS:** Nyeleti Consulting (Pty) Ltd 2 Lynnwood Galleries 345 Rosemary Road Lynnwood PRETORIA P O Box 35158 MENLO PARK 0102 Telephone 012 361 3629 Fax 012 361 3525 E-mail info@nyeleti.co.za Website www.nyeleti.co.za Certificate Number : 7827 ISO 9001:2008 ### **TABLE OF CONTENTS** | 1 | INT | ROD | DUCTION | 6 | |---|-------------|------|--|--------| | | 1.1 | Pur | pose of the report | 6 | | | 1.2 | Stu | dy Area | 6 | | 2 | TRA | 4FFI | C MANAGEMENT PLAN | 9 | | | 2.1 | Pip | eline road crossings and property access crossings | 9 | | | 2.1. | .1 | Zinnia Drive (Crossing 1 and Crossing 2) - Open Trenching | 12 | | | 2.1.
Tre | | Gazania Crescent and Lilium Avenue (Crossing 3 and Crossing 4) - | • | | | 2.1 | .3 | Marigold Crescent and Lilium Avenue (Crossing 5) - Open Trenching | 14 | | | 2.1 | .4 | Marlboro Drive (Crossing 6) - Pipe Jacking | 14 | | | 2.1 | .5 | South Road (Crossing 7) - Pipe Jacking | 15 | | | 2.1 | 6 | Woodlands Drive (Crossing 8) - Pipe Jacking | 16 | | | 2.1. | .7 | Lincoln Street (Crossing 9) - Open Trenching | 17 | | | 2.1. | 8 | Eastgate Business Park on South Road (Access crossing 1) - Open Tre 18 | nching | | | 2.1.
Tre | | Woodlands Drive Office Park on Jessica Close (Access Crossing 2) - | • | | | 2.1.
Tre | | The Country Club Johannesburg Entrance (Access Crossing 3) - | | | | 2.1.
| .11 | Golf View Close (Access Crossing 4) - Open Trenching | 23 | | | 2.1. | 12 | Lincoln Lane (Access Crossing 5) - Open Trenching | 24 | | | 2.1. | .13 | The Pass (Access Crossing 6) - Open Trenching | 25 | | | 2.1. | 14 | Playmouth Street (Access Crossing 7) - Open Trenching | 26 | | | 2.2 | Cor | nstruction of Woodmead pipeline under Woodlands drive | 27 | | | 2.3 | Cor | nstruction of Woodmead pipeline next to Western Service Road | 27 | | 3 | CO | NCL | USION | 28 | | 4 | RE | COM | MENDATIONS | 30 | | 5 | RE | FERI | ENCES | 31 | | Α | NNEX | URE | A: TRAFFIC ACCOMODATION DRAWINGS | 32 | ### LIST OF FIGURES | Figure 1: Locality of Woodmead Pipeline | 7 | |--|---| | Figure 2: Locality of Woodmead Pipeline. | | | Figure 3: Woodmead Pipeline Road crossings and Property access crossings1 | 1 | | Figure 4: Zinnia Drive (Crossing 1 and Crossing 2) - Open Trenching1 | | | Figure 5: Gazania Crescent and Lilium Avenue (Crossing 3) - Open Trenching1 | | | Figure 6: Gazania Crescent and Lilium Avenue (Crossing 3) - Open Trenching1 | | | Figure 7: Gazania Crescent and Lilium Avenue (Crossing 3) - Open Trenching1 | 4 | | Figure 8: Marlboro Drive (Crossing 6) - Pipe Jacking1 | 5 | | Figure 9: South Road (Crossing 7) - Pipe Jacking1 | | | Figure 10: Woodlands Drive (Crossing 8) - Pipe Jacking | | | Figure 11: Lincoln Street (Crossing 9) proposed bypass - Open Trenching1 | 8 | | Figure 12: Lincoln Street (Crossing 9) - Open Trenching | | | Figure 13: Eastgate Business Park on South Road (Access crossing 1) - Open Trenching 19 | | | Figure 14: Eastgate Business Park on South Road (Access crossing 1) - Open Trenching 19 | 9 | | Figure 15: Woodlands Drive Office Park (Access crossing 2) on Jessica Close - Ope | n | | Trenching2 | | | Figure 16: Woodlands Drive Office Park (Access crossing 2) on Jessica Close - Ope | n | | Trenching | | | Figure 17: The Country Club Johannesburg Entrance (Access Crossing 3) is on Lincoln Street | ŧ | | - Open Trenching | | | Figure 18: The Country Club Johannesburg Entrance (Access Crossing 3) is on Lincoln Street | | | - Open Trenching | 2 | | Figure 19: Golf View Close (Access Crossing 4) is on Lincoln Street - Open Trenching 2 | 3 | | Figure 20: Golf View Close (Access Crossing 4) is on Lincoln Street - Open Trenching 2 | 3 | | Figure 21: Lincoln Lane (Access Crossing 5) is on Lincoln Street - Open Trenching 24 | 4 | | Figure 22: Lincoln Lane (Access Crossing 5) is on Lincoln Street - Open Trenching 24 | 4 | | Figure 23: The Pass (Access Crossing 6) is on Lincoln Street - Open Trenching | 5 | | Figure 24: The Pass (Access Crossing 6) is on Lincoln Street - Open Trenching | 5 | | Figure 25: Playmouth Street (Access Crossing 7) is on Lincoln Street - Open Trenching 20 | 6 | | Figure 26: Playmouth Street (Access Crossing 7) is on Lincoln Street - Open Trenching 20 | 6 | | LIST OF TABLES | | | Table 1: Proposed Woodmead pipeline method of construction on each road crossing 10 | 0 | | Table 2: Proposed Woodmead pipeline method of construction on each access crossing 10 | | ### LIST OF ACRONYMS | СОТО | Committee of Transport Officials | |--------|---| | GLA | Gross Leasable Area | | LOS | Level of Service | | SARTSM | South African Road and Traffic Signs Manual | | TIA | Traffic Impact Assessment | | TMH | Technical Methods for Highways | | v/c | Volume capacity ratio | | Veh/h | Vehicles per hour | | PTF | Public Transport Facility | | Km | Kilometre | | NMT | Non-Motorized Transport | #### 1 INTRODUCTION The Johannesburg Roads Agency requested for a traffic management plan along the route which the proposed Woodmead Water Upgrading will be constructed. #### 1.1 Purpose of the report The purpose of this report is to outline the proposed traffic management plan to be implemented on the road network during the construction of the proposed Woodmead pipeline. #### 1.2 Study Area The project area is located on the North-Eastern side of Johannesburg in **Region E**. Refer to the locality plan in Figure 2. The proposed pipeline is located in Woodmead along the following routes: - Zinnia Drive; - Lilium Avenue; - South Road; - Western Service Road; - Woodmead Drive; - Woodlands Drive; - · Lincoln Street; and - Jessica Close. The pipeline will cross the following routes: - Zinnia Drive (Crossing 1 and 2); - Gazania Crescent (Crossing 3 and 4); - Marigold Cresset (Crossing 5); - Marlboro Drive (Crossing 6); - South Road (Crossing 7); - Woodlands (Crossing 8); and - Lincoln Street (Crossing 9). Figure 1: Locality of Woodmead Pipeline Figure 2: Locality of Woodmead Pipeline. #### 2 TRAFFIC MANAGEMENT PLAN Traffic accommodation/management plans are compiled in accordance to the South African Road Traffic Signs Manual (SARTSM). Construction will take place between 09:00 and 15:00, this will be the ideal time for construction to take place as there will be less traffic on the roads. The working area will be barricaded with a new jersey barrier next to the road (areas where there is traffic movement) and a net will be used in areas where there is no traffic movement. Temporary warning signs will be implemented throughout the working area. #### 2.1 Pipeline road crossings and property access crossings The proposed Woodmead pipeline will be constructed along (parallel) the following routes as indicated on Figure 2 and Figure 3.: - Zinnia Drive; - Lilium Avenue; - South Road; - Western Service Road; - Woodmead Drive; - Woodlands Drive; - · Lincoln Street; and - Jessica Close. The Woodmead pipeline will cross the following roads and intersections as indicated on Figure 3 by red circles. - Zinnia Drive (Crossing 1); - Zinnia Drive and Lilium Avenue (Crossing 2); - Gazania Crescent and Lilium Avenue (Crossing 3 and 4); - Marigold Cresset Lilium Avenue (Crossing 5); - Marlboro Drive (Crossing 6); - South Road (Crossing 7); - Woodlands Drive (Crossing 8); and - Lincoln Street (Crossing 9). The Woodmead pipeline crosses several roads and the proposed method of construction on each road crossing is indicated on Table 1 below. Table 1: Proposed Woodmead pipeline method of construction on each road crossing | Road Name | Proposed Method of Construction | |-----------------------------------|---------------------------------| | Zinnia Drive (Crossing 1 & 2) | Open Trenching | | Gazania Crescent (Crossing 3 & 4) | Open Trenching | | Marigold Cresset (Crossing 5) | Open Trenching | | Marlboro Drive (Crossing 6) | Pipe Jacking | | South Road (Crossing 7) | Pipe Jacking | | Woodlands Drive (Crossing 8) | Pipe Jacking | | Lincoln Street (Crossing 9) | Open Trenching | The following property access points will be affected by the construction of the proposed Wooodmead pipeline as indicated in Figure 3 by blue circles: - Eastgate Business Park on South Road (Access crossing 1) - Woodlands Drive Office Park on Jessica Close (Access Crossing 2) - The Country Club Johannesburg Entrance (Access Crossing 3) - Golf View Close (Access Crossing 4) - Lincoln Lane (Access Crossing 5) - The Pass (Access Crossing 6) - Playmouth Street (Access Crossing 7) Table 2: Proposed Woodmead pipeline method of construction on each access crossing | Road Name | Proposed
Method of
Construction | |--|---------------------------------------| | Eastgate Business Park on South Road (Access crossing 1) | Open Trenching | | Woodlands Drive Office Park on Jessica Close (Access Crossing 2) | Open Trenching | | The Country Club Johannesburg Entrance (Access Crossing 3) | | | Golf View Close (Access Crossing 4) | | | Lincoln Lane (Access Crossing 5) | | | The Pass (Access Crossing 6) | | | Playmouth Street (Access Crossing 7) | | Figure 3: Woodmead Pipeline Road crossings and Property access crossings ### 2.1.1 Zinnia Drive (Crossing 1 and Crossing 2) - Open Trenching The proposed Woodmead pipeline will cross Zinnia Drive on crossing 1 and crossing 2 as indicated on Figure 4 with red circles, both crossings will be open trenching and the road will be closed for traffic during construction. The traffic will be diverted into Salvia Crescent as indicated on Figure 4 below by the yellow line, warning traffic signs will be implemented to guide traffic in this regard (see Annexure A: drawing no JW14358-16941-T14-S13-00). Figure 4: Zinnia Drive (Crossing 1 and Crossing 2) - Open Trenching ## 2.1.2 Gazania Crescent and Lilium Avenue (Crossing 3 and Crossing 4) - Open Trenching Crossing 3 and crossing 4 are located on Gazania Crescent as indicated on Figure 5 and Figure 6 by red circles, both crossings will be open trenching and crossing 3 will be constructed first and the traffic will be diverted to the adjacent Gazania crescent as indicated in Figure 5 by the yellow line. Crossing 4 will be constructed after crossing 3 and the traffic will be diverted to Gazania Crescent as indicated on Figure 6 by the yellow line, warning traffic signs will be implemented to guide traffic in this regard (see Annexure A: drawing no JW14358-16941-T14-S14-00). Figure 5: Gazania Crescent and Lilium Avenue (Crossing 3) - Open Trenching Figure 6: Gazania Crescent and Lilium Avenue (Crossing 3) - Open Trenching #### 2.1.3 Marigold Crescent and Lilium Avenue (Crossing 5) - Open Trenching Crossing 5 is located on Marigold Crescent and Lilium Avenue as indicated on Figure 7 by a red circle, this crossing will be open trenching and Marigold Crescent will be closed and traffic will be diverted to Gazania Crescent as indicated in Figure 7 by the yellow line. Warning traffic signs will be implemented to guide traffic in this regard (see Annexure A: drawing no JW14358-16941-T14-S15-00). Figure 7: Gazania Crescent and Lilium Avenue (Crossing 3) - Open Trenching ## 2.1.4 Marlboro Drive (Crossing 6) - Pipe Jacking The proposed Woodmead pipeline will cross Marlboro Drive on crossing 6 as indicated on
Figure 8 with a red circle, this crossing will be pipe jacking and traffic will not be interrupted. Warning traffic signs will be implemented on Marlboro drive, Lillium Avenue and South Road to notify the road users of the construction that will be taking place. (see Annexure A: drawing no JW14358-16941-T14-S16-00). Figure 8: Marlboro Drive (Crossing 6) - Pipe Jacking ## 2.1.5 South Road (Crossing 7) - Pipe Jacking South Road crossing 7 as indicated on Figure 9 by a red circle, will be pipe jacking and traffic will not be interrupted. Warning traffic signs will be implemented on South Road and Impala Road to notify the road users of the construction that will be taking place. (see Annexure A: drawing no JW14358-16941-T14-S18-00). Figure 9: South Road (Crossing 7) - Pipe Jacking ## 2.1.6 Woodlands Drive (Crossing 8) - Pipe Jacking The proposed Woodmead pipeline will cross Woodlands Drive on crossing 8 as indicated on Figure 10 by a red circle, this crossing will be pipe jacking and traffic will not be interrupted. Warning traffic signs will be implemented on Woodmead Drive, and Woodlands Drive to notify the road users of the construction that will be taking place (see Annexure A: drawing no JW14358-16941-T14-S27-00). Figure 10: Woodlands Drive (Crossing 8) - Pipe Jacking ## 2.1.7 Lincoln Street (Crossing 9) - Open Trenching Crossing 9 is located on Lincoln Street and Woodlands Drive as indicated on Figure 11 and Figure 12 by red circles, this crossing will be open trenching and Lincoln Street will be closed and traffic will be diverted on a proposed bypass when construction will be taking place on the Lincoln Street and vice versa. Warning traffic signs will be implemented to guide traffic in this regard (see Annexure A: drawing no JW14358-16941-T14-S29-00). Figure 11: Lincoln Street (Crossing 9) proposed bypass - Open Trenching Figure 12: Lincoln Street (Crossing 9) - Open Trenching ## 2.1.8 Eastgate Business Park on South Road (Access crossing 1) - Open Trenching The proposed Woodmead pipeline will cross the Eastgate Business Park on South Road (Access crossing 1) as indicated on Figure 13 and Figure 14 in blue circles, this crossing will be open trenching and during construction traffic will be diverted on each side of the access point and vice versa. Warning traffic signs will be implemented to guide traffic in this regard (see Annexure A: no JW14358-16941-T14-S17-00). Figure 13: Eastgate Business Park on South Road (Access crossing 1) - Open Trenching Figure 14: Eastgate Business Park on South Road (Access crossing 1) - Open Trenching # 2.1.9 Woodlands Drive Office Park on Jessica Close (Access Crossing 2) - Open Trenching Woodlands Drive Office Park (Access Crossing 2) are both on Jessica Close as indicated on Figure 15 and Figure 16 (Access crossing 2) and crossing will be open trenching. During construction traffic will be diverted on each side of the access point and vice versa as indicated on Figure 15 and Figure 16. Warning traffic signs will be implemented to guide traffic in this regard (see Annexure A: no JW14358-16941-T14-S28-00). Figure 15: Woodlands Drive Office Park (Access crossing 2) on Jessica Close - Open Trenching Figure 16: Woodlands Drive Office Park (Access crossing 2) on Jessica Close - Open Trenching ## 2.1.10 The Country Club Johannesburg Entrance (Access Crossing 3) - Open Trenching The Country Club Johannesburg Entrance (Access Crossing 3) is on Lincoln Street as indicated on Figure 17 and Figure 18 (Access crossing 3) and crossing will be open trenching. During construction traffic will be diverted on each side of the access point and vice versa as indicated on Figure 17 and Figure 18. Warning traffic signs will be implemented to guide traffic in this regard (see Annexure A: drawing no JW14358-16941-T14-S30-00). Figure 17: The Country Club Johannesburg Entrance (Access Crossing 3) is on Lincoln Street - Open Trenching Figure 18: The Country Club Johannesburg Entrance (Access Crossing 3) is on Lincoln Street - Open Trenching ## 2.1.11 Golf View Close (Access Crossing 4) - Open Trenching Golf View Close (Access Crossing 4) is on Lincoln Street as indicated on Figure 19 and Figure 20 (Access crossing 4) and crossing will be open trenching. During construction traffic will be diverted on each side of the access point and vice versa as indicated on Figure 19 and Figure 20. Warning traffic signs will be implemented to guide traffic in this regard (see Annexure A: drawing no JW14358-16941-T14-S30-00). Figure 19: Golf View Close (Access Crossing 4) is on Lincoln Street - Open Trenching Figure 20: Golf View Close (Access Crossing 4) is on Lincoln Street - Open Trenching ## 2.1.12 Lincoln Lane (Access Crossing 5) - Open Trenching Lincoln Lane (Access Crossing 5) is on Lincoln Street as indicated on Figure 21 and Figure 22 (Access crossing 5) and crossing will be open trenching. During construction traffic will be diverted on each side of the access point and vice versa as indicated on Figure 21 and Figure 22. Warning traffic signs will be implemented to guide traffic in this regard (see Annexure A: drawing no JW14358-16941-T14-S31-00). Figure 21: Lincoln Lane (Access Crossing 5) is on Lincoln Street - Open Trenching Figure 22: Lincoln Lane (Access Crossing 5) is on Lincoln Street - Open Trenching ## 2.1.13 The Pass (Access Crossing 6) - Open Trenching The Pass (Access Crossing 6) is on Lincoln Street as indicated on Figure 23 and Figure 24 (Access crossing 6) and crossing will be open trenching. During construction traffic will be diverted on each side of the access point and vice versa as indicated on Figure 23 and Figure 24. Warning traffic signs will be implemented to guide traffic in this regard (see Annexure A: drawing no JW14358-16941-T14-S32-00). Figure 23: The Pass (Access Crossing 6) is on Lincoln Street - Open Trenching Figure 24: The Pass (Access Crossing 6) is on Lincoln Street - Open Trenching ## 2.1.14 Playmouth Street (Access Crossing 7) - Open Trenching Playmouth Street (Access Crossing 7) is on Lincoln Street as indicated on Figure 25 and Figure 26 (Access crossing 7) and crossing will be open trenching. During construction traffic will be diverted on each side of the access point and vice versa as indicated on Figure 25 and Figure 26. Warning traffic signs will be implemented to guide traffic in this regard (see Annexure A: drawing no JW14358-16941-T14-S32-00). Figure 25: Playmouth Street (Access Crossing 7) is on Lincoln Street - Open Trenching Figure 26: Playmouth Street (Access Crossing 7) is on Lincoln Street - Open Trenching #### 2.2 Construction of Woodmead pipeline under Woodlands drive The Woodmead pipeline will be constructed under the road on Woodlands Drive (from Lincoln Street to Jessica Close) these locations are clearly indicated in Figure 3 (the pipeline on Woodland Drive is indicated with a red colour). The existing eastbound left lane on Woodlands Drive will be used as a working area for the excavation and installation of the pipeline. The median along Woodlands Drive will be removed to accommodate an additional lane since the left lane will be used for construction purposes. Warning traffic signs will be implemented to guide traffic in this regard (see Annexure A: drawing no JW14358-16941-T14-S29-00). #### 2.3 Construction of Woodmead pipeline next to Western Service Road The Woodmead pipeline will be constructed next to the road on Western Service Road (between Edison Street and Woodlands Drive and The Woodlands Office Park Entrance Road). The Northbound lane will be used as a working area for the excavation and installation of the pipeline along the Western Service Road. A stop and go traffic accommodation will be implemented during construction, the southbound lane will be used for this purpose during construction phase. The working area along the western service road northbound lane will be in 100m intervals. Warning traffic signs will be implemented to guide traffic in this regard (see Annexure A: drawing no JW14358-16941-T14-S24-00). #### 3 CONCLUSION Given the findings in the report, the following conclusions are drawn: - Woodmead Water Upgrading project area is located on the North-Eastern side of Johannesburg in Region E. - The proposed pipeline is located in Woodmead along the following routes: - Zinnia Drive; - Lilium Avenue; - South Road; - Western Service Road; - Woodmead Drive; - Woodlands Drive; - Lincoln Street; and - Jessica Close. - The pipeline will cross the following routes: - Zinnia Drive (Crossing 1 and 2); - Gazania Crescent (Crossing 3 and 4); - Marigold Cresset (Crossing 5); - Marlboro Drive (Crossing 6); - South Road (Crossing 7); - Woodlands Drive (Crossing 8); and - Lincoln Street (Crossing 9). - Proposed Woodmead pipeline method of construction on each road crossing is as follows: - o Zinnia Drive (Crossing 1 & 2) Open Trenching - Gazania Crescent (Crossing 3 & 4) Open Trenching - Marigold Cresset (Crossing 5) Open Trenching - Marlboro Drive (Crossing 6) Pipe Jacking - South Road (Crossing 7) Pipe Jacking - Woodlands Drive (Crossing 8) Pipe Jacking - Lincoln Street (Crossing 9) Open Trenching - The following property access points will be directly affected by the construction of the proposed Wooodmead pipeline: - o Eastgate Business Park on South Road (Access crossing 1) - Woodlands Drive Office Park on Jessica Close (Access Crossing 2) - The Country Club Johannesburg Entrance (Access Crossing 3) - Golf View Close (Access Crossing 4) - Lincoln Lane (Access Crossing 5) - The Pass (Access Crossing 6) - Playmouth Street (Access Crossing 7) - The existing eastbound left lane on Woodlands Drive will be used as a working area for the excavation and installation of the pipeline. - The median along Woodlands Drive will be removed to accommodate an additional lane since the left lane will be used for construction purposes. - The Western Service Road northbound lane will be used as a working area for the excavation and installation
of the pipeline along the Western Service Road. - A stop and go traffic accommodation will be implemented during construction on the Western Service Road and the southbound lane will be used for this purpose during the construction phase. . #### 4 RECOMMENDATIONS The following recommendations are made: - It is recommended that construction takes place only between 09:00 am and 15:00 pm during the construction phase. - It is recommended that all traffic warning signs be manufactured and implemented in accordance to the South African Road Traffic Signs Manual (SARTSM). - Traffic accommodation on site must be approved by an engineer. - Access to propertiesduring construction must be communicated to the property owners before construction takes place. ## 5 REFERENCES - 1. South African Road Traffic Signs Manual (SARTSM), Volume 2. - 2. South African Road Traffic Signs Manual (SARTSM), Volume 3. ## **ANNEXURE A: TRAFFIC ACCOMODATION DRAWINGS** ## **WOODMEAD WATER UPGRADING** # TRAFFIC IMPACT STUDY REPORT DRAFT REPORT REV 02 DATE: 25 November 2022 Prepared by: Nyeleti Consulting (Pty) Ltd P O Box 35158 Menlopark 0102 Tel: (012) 361 3629 Fax: (012) 361 3525 #### **DOCUMENT CONTROL SHEET** CLIENT: PROJECT: Woodmead Water Upgrading TIS PROJECT 16941 TITLE: Woodmead Water Upgrading Traffic Impact Study | Date | Document No. | Prepared by | Reviewed and Approved by | |---------------------|--------------|---|------------------------------------| | 25 November
2022 | 16941-R02 | Tintswalo Rikhotso M Tech Eng (Civil). | Sundran Naicker (PR Eng.) Director | | Signatures | | | | ## **CONTACT DETAILS:** Nyeleti Consulting (Pty) Ltd 2 Lynnwood Galleries 345 Rosemary Road Lynnwood PRETORIA P O Box 35158 MENLO PARK 0102 Telephone 012 361 3629 Fax 012 361 3525 E-mail info@nyeleti.co.za Website www.nyeleti.co.za Certificate Number : 7827 ISO 9001:2008 #### TABLE OF CONTENTS INTRODUCTION6 CONTEXT AND FRAMEWORK......6 2 2.1 Purpose of the report6 2.2 Study Area......6 DATA COLLECTION9 3.1 3.2 Data collected by Nyeleti Consulting......9 TRAFFIC VOLUMES9 4.1 Current traffic volumes 9 4.2 4.2.1 Traffic volumes for the morning peak, midday peak and afternoon peak....... 11 4.3 5.1 5.2 OUTCOMES OF TRAFFIC ANALYSIS FOR CONSTRUCTION SCENARIO......22 6.1 Construction of Woodmead pipeline under Woodlands drive and Western Service Road 22 6.1.1 6.1.2 7 8 9 10 11 12 REFERENCES 32 ANNEXURE B: SIDRA ANALYSIS OUTPUT FILES56 ## LIST OF FIGURES | Figure 1: Locality of Woodmead Pipeline | . 7 | |--|------| | Figure 2: Locality of Woodmead Pipeline. | . 8 | | Figure 3: Traffic counting positions | 12 | | Figure 4:Current Morning Peak, Midday Peak and Afternoon Peak Volumes at intersectio | | | Figure 5: Western service Road/Jessica Close & Woodlands Drive – Intersection 8 layou
Before Construction and During Construction | ıt - | | Figure 6: Woodlands Drive and Lincoln Street – Intersection 9 layout - Before Construction | | | LIST OF TABLES | | | Table 1: Current traffic Volumes data Collection Times on intersections | 11 | | Table 2: Morning, Midday and Afternoon Peak times at intersections | 14 | | Table 3: Peak times at filling station and shopping centre accesses along the route of toposed Woodmead pipeline | | | Table 4: Modal split | | | Table 5: Level of Service criteria | | | Table 6: 2022 Morning, Midday and Afternoon Peak times with corresponding LOS | _ | | Table 7: 2022 Morning, Midday and Afternoon Peak with corresponding LOS and averaged | ge | | Table 8: Proposed Woodmead pipeline method of construction on each road crossing | | | Table 9: Morning, Midday and Afternoon Peak with corresponding LOS during construction to the state of st | for | | Table 10: Inputs used to calculate the queue length on Western Service Road duri | ng | | Table 11: Western Service Road highest 15 minutes morning peak traffic volumes to calculating queue length during construction | for | | Table 12: Western Service Road highest 15 minutes morning peak queue length duri | ng | | | | | Table 13: Western Service Road highest 15 minutes midday peak traffic volumes to calculating queue length during construction | | | Table 14: Western Service Road highest 15 minutes midday peak queue length duri | | | construction | _ | | | | ## LIST OF ACRONYMS | СОТО | Committee of Transport Officials | |--------|---| | GLA | Gross Leasable Area | | LOS | Level of Service | | SARTSM | South African Road and Traffic Signs Manual | | TIA | Traffic Impact Assessment | | TMH | Technical Methods for Highways | | v/c | Volume capacity ratio | | Veh/h | Vehicles per hour | | PTF | Public Transport Facility | | Km | Kilometre | | NMT | Non-Motorized Transport | #### 1 INTRODUCTION The Johannesburg Roads Agency requested for a traffic impact assessment and a traffic management plan along the route which the proposed Woodmead Water Upgrading will be constructed. #### 2 CONTEXT AND FRAMEWORK ## 2.1 Purpose of the report The purpose of this report is to give feedback on the impact the proposed Woodmead Water Upgrading will have during construction on traffic on the adjacent road network. It also aims to provide suggestions regarding traffic accommodation and access that is in line with the requirements and regulations of the authorising authority. ## 2.2 Study Area The project area is located on the North-Eastern side of Johannesburg in **Region E**. Refer to the locality plan in Figure 2. The proposed pipeline is located in Woodmead along the following routes: - Zinnia Drive; - Lilium Avenue; - South Road; - Western Service Road; - Woodmead Drive; - Woodlands Drive; - · Lincoln Street; and - Jessica Close. The pipeline will cross the following routes: - Zinnia Drive; - Road within Alexandra Taxi Rank; - Gazania Crescent; - Marigold Cresset; - Lilium Avenue; - Marlboro Drive; - South Road; - Woodlands Drive; and - · Lincoln Street. Figure 1: Locality of Woodmead Pipeline Figure 2: Locality of Woodmead Pipeline. #### 3 DATA COLLECTION #### 3.1 Information from external sources The following information was obtained from various interested and affected parties: Woodmead pipe locality plan The information mentioned above is referred to and used in this report. #### 3.2 Data collected by Nyeleti Consulting The following data was collected by Nyeleti Consulting: - Fouteen hour classified traffic counts: - Fouteen hour turning movement traffic counts; - Twenty-four hour classified traffic counts; - Twenty-four hour turning movement traffic counts; and - Photographs of the area and various affected roads and intersections. Data was collected through a traffic counting subconsultant on the 3rd of November 2022. Traffic counts were collected over a period of 14 hours from 05:00am to 19:00pm and over a period of 24 hours from 00:00 to 00:00. #### 4 TRAFFIC VOLUMES #### 4.1 Current traffic volumes Current traffic volumes were determined by means of 14-hour traffic counts and 24-hour traffic counts. Traffic was counted from 05:00 to 19:00 and 00:00 to 00 00 on Thursday the 3rd of November 2022. Figure 3 indicate the traffic counting stations. Traffic counts consisted of turning movement counts and classified vehicle counts, Table 1 shows the traffic counts data collection times for each intersection. The detailed traffic counting data is attached as **Annexure A**. #### 4.2 Turning movement traffic volumes Turning movement traffic counts were conducted at the following intersections as illustrated in *Figure 3*: - Zania Drive and Lilium Avenue (intersection 1) - Marlboro Drive (M60) and Lilium Avenue (Intersection 2) - Impala Road and South Road (Intersection 3) - Western Service Road and Wendy Road (Intersection 4) - Western Service Road and Carnation Street (Intersection 5) - Western Service Road and Harrowdene Office Park Entrance Road (Intersection 6) - Western
Service Road and The Woodlands Office Park Entrance Road (Intersection 7) - Woodlands Drive and Western Service Road (Intersection 8) - Woodlands Drive and Lincoln Street (Intersection 9) - Woodlands Drive and The Woodlands Office Park Entrance Road/Country Club Estate (Intersection 10) - Woodlands Drive and The Woodlands Office Park Entrance Road/Pestle Street (Intersection 11) - Woodmead Drive & Woodlands Drive (Intersection 12) Turning movement traffic counts were conducted at the following accesses as illustrated in *Figure 3 by blue circles*, the data was collected over a period of 24hrs: - Marlboro Drive (M60) Westbound Shell Filling Station (Access A1) - Marlboro Drive (M60) Eastbound Shell Filling Station (Access A2) - Lilium Avenue Shell Filling Station (Access A3) - Western Service Road Caltex Filling Station (Access A4) - Woodlands Drive and Western Service Road Engen Filling Station (Access A5) Table 1: Current traffic Volumes data Collection Times on intersections | Intersection Name | Intersection Type | Traffic Counts Period | | |---|----------------------------------|---------------------------|--| | Zinia Drive and Lilium Avenue - Intersection | Unsignalised,3 Way Stop | 14 Hours (05:00 to 19:00) | | | Marlboro Drive and Lilium Avenue/South
Road - Intersection 2 | Signalised,4 Ways | 14 Hours (05:00 to 19:00) | | | South Road and Impala Road – Intersection 3 | Unsignalised, Stop on minor road | 14 Hours (05:00 to 19:00) | | | Western Service Road and Wendy Road -
Intersection 4 | Unsignalised, Stop on minor road | 14 Hours (05:00 to 19:00) | | | Western Service Road and Carnation
Street - Intersection 5 | Unsignalised, Stop on minor road | 14 Hours (05:00 to 19:00) | | | Western Service Road and Harrowdene
Office Park Entrance Road – Intersection 6 | Unsignalised,3 Way
Roundabout | 14 Hours (05:00 to 19:00) | | | Western Service Road and The Woodlands
Office Park Entrance Road – Intersection 7 | Unsignalised,3 Way
Roundabout | 14 Hours (05:00 to 19:00) | | | Woodlands Drive and Western Service
Road – Intersection 8 | Signalised,4 Ways | 14 Hours (05:00 to 19:00) | | | Woodlands Drive and Lincoln Street –
Intersection 9 | Unsignalised, Stop on minor road | 14 Hours (05:00 to 19:00) | | | Woodlands Drive and The Woodlands
Office Park Entrance Road/Country Club
Estate - Intersection 10 | Signalised,4 Ways | 14 Hours (05:00 to 19:00) | | | Woodlands Drive and The Woodlands
Office Park Entrance Road/Pestle Street -
Intersection 11 | Signalised,4 Ways | 14 Hours (05:00 to 19:00) | | | Woodmead Drive & Woodlands Drive –
Intersection 12 | Signalised,4 Ways | 14 Hours (05:00 to 19:00) | | ## 4.2.1 Traffic volumes for the morning peak, midday peak and afternoon peak The morning peak is between **07:00 to 08:30**, the midday peak is between **12:00 to 15:00** and the afternoon peak is between **15:15 to 17:45** at all respective intersections. Table 2 summarises the peak times for each intersection. The traffic count data can be found in Annexure A show a visual representation of the summarised counts for the morning peak, midday peak and afternoon peak. Table 3 summarises the peak times for each filling station along the route of the pipeline and also indicates the 24 hr traffic entering and exiting each filling station. It can be seen that 5 Filling stations along the proposed Woodmead pipeline route attract traffic volumes of between 1 408 and 4 241 over a 24hr period. Figure 3: Traffic counting positions Figure 4:Current Morning Peak, Midday Peak and Afternoon Peak Volumes at intersections Table 2: Morning, Midday and Afternoon Peak times at intersections | Intersection Name | Intersection Type | Morning
Peak Times | Morning
Peak Traffic
Volume at
Intersection | Midday
Peak Times | Midday Peak Traffic Volume at Intersection | Afternoon
Peak Times | Afternoon
Peak Traffic
Volume at
Intersection | |--|----------------------------------|-----------------------|--|----------------------|--|-------------------------|--| | Zinia Drive and Lilium Avenue -
Intersection 1 | Unsignalised,3 Way
Stop | 07:15-08:15 | 1 729 | 14:00-15:00 | 833 | 16:30-17:30 | 1 136 | | Marlboro Drive and Lilium Avenue/South Road - Intersection 2 | Signalised,4 Ways | 07:00-08:00 | 4 156 | 14:00-15:00 | 3 170 | 16:15-17:15 | 3 915 | | South Road and Impala Road –
Intersection 3 | Unsignalised, Stop on minor road | 07:15-08:15 | 2 773 | 09:00-10:00 | 1 629 | 16:15-17:15 | 2 408 | | Western Service Road and Wendy
Road - Intersection 4 | Unsignalised, Stop on minor road | 07:15-08:15 | 941 | 13:30-14:30 | 538 | 16:15-17:15 | 619 | | Western Service Road and Carnation
Street - Intersection 5 | Unsignalised, Stop on minor road | 07:15-08:15 | 1 071 | 13:30-14:30 | 610 | 16:15-17:15 | 601 | | Western Service Road and
Harrowdene Office Park Entrance
Road – Intersection 6 | Unsignalised,3 Way
Roundabout | 07:30-08:30 | 1 202 | 13:30-14:30 | 634 | 16:15-17:15 | 702 | | Western Service Road and The
Woodlands Office Park Entrance
Road – Intersection 7 | Unsignalised,3 Way
Roundabout | 07:15-08:15 | 1 337 | 13:45-14:45 | 818 | 16:15-17:15 | 813 | | Western service Road/Jessica Close & Woodlands Drive – Intersection 8 | Signalised,4 Way Stop | 07:30-08:30 | 3 301 | 13:45-14:45 | 2 332 | 16:15-17:15 | 2 831 | | Woodlands Drive and Lincoln Street - Intersection 9 | Unsignalised, Stop on minor road | 07:30-08:30 | 2 012 | 13:45-14:45 | 1 472 | 16:30-17:30 | 2 005 | | Woodlands Drive and The
Woodlands Office Park Entrance
Road/Country Club Estate -
Intersection 10 | Signalised,4 Ways | 07:30-08:30 | 1 790 | 14:00-15:00 | 1 259 | 16:30-17:30 | 1 762 | | Woodlands Drive and The
Woodlands Office Park Entrance
Road/Pestle Street -Intersection 11 | Signalised,4 Ways | 07:15-08:15 | 1 499 | 12:30-13:30 | 1 032 | 16:30-17:30 | 1 506 | | Woodmead Drive & Woodlands Drive - Intersection 12 | Signalised,4 Ways | 07:30-08:30 | 5 642 | 12:15-13:15 | 5 299 | 16:15-17:15 | 6 326 | Table 3: Peak times at filling station and shopping centre accesses along the route of the proposed Woodmead pipeline | Intersection Name | Total traffic
volumes at
entrance/exit
over 24hrs | Peak Times
(between 00:00
and 12:00) | Morning Peak
Traffic Volume at
Access Point | Peak Times
(between 12:00
and 00:00) | Peak Traffic Volume
at Access Point | |--|--|--|---|--|--| | Marlboro Drive (M60) Westbound | 1 819 | 10:30-11:30 | 136 | 17:00-18:00 | 148 | | Shell Filling Station - Access (A1) | (In/Out)
828/991 | 10:30-11:30 | (In/Out)
56/80 | 17:00-18:00 | (In/Out)
66/81 | | Marlboro Drive (M60) Eastbound | 1 805 | 10.45.44.45 | 130 | 40.00.44.00 | 139 | | Shell Filling Station - Access (A2) | (In/Out)
830/975 | 10:15-11:15 | (In/Out)
52/78 | 13:00-14:00 | (In/Out)
74/65 | | Lilium Avenue Shell Filling Station | 1 451 | 07.00.00.00 | 113 | 40.45.47.45 | 164 | | - Access (A3) | (In/Out)
625/826 | - 07:00-08:00 | (In/Out)
44/69 | 16:45-17:45 | (In/Out)
63/101 | | Western Service Road Caltex
Filling Station – Access (A4) | 4 241 | 07.45.00.45 | 317 | 40.45.40.45 | 338 | | | (In/Out)
2 207/2 034 | 07:45-08:45 | (In/Out)
160/157 | 12:15-13:15 | (In/Out)
165/173 | | Woodlands Drive and Western | 1 408 | 07.45.00.45 | 199 | 40.45.47.45 | 129 | | Service Road Engen Filling
Station - Access (A5) | (In/Out)
759/649 | 07:15-08:15 | (In/Out)
140/96 | 16:15-17:15 | (In/Out)
68/61 | #### 4.3 Classified counts (Modal Split) Classified counts were done on the following intersections. - Zania Drive and Lilium Avenue (intersection 1) - Marlboro Drive (M60) and Lilium Avenue (Intersection 2) - Impala Road and South Road (Intersection 3) - Western Service Road and Wendy Road (Intersection 4) - Western Service Road and Carnation Street (Intersection 5) - Western Service Road and Harrowdene Office Park Entrance Road (Intersection 6) - Western Service Road and The Woodlands Office Park Entrance Road (Intersection 7) - Woodlands Drive and Western Service Road (Intersection 8) - Woodlands Drive and Lincoln Street (Intersection 9) - Woodlands Drive and The Woodlands Office Park Entrance Road/Country Club Estate (Intersection 10) - Woodlands Drive and The Woodlands Office Park Entrance Road/Pestle Street (Intersection 11) - Woodmead Drive & Woodlands Drive (Intersection 12) Table 4 shows a breakdown of the modal split on all intersections respectively. Table 4: Modal split | Intersection | Car | Taxi | Bus | Truck | Total | |---|---------|---------|--------|--------|--------| | Zinia Drive and Lilium Avenue - | 8 218 | 3 316 | 23 | 353 | 11.010 | | Intersection 1 | (69.0%) | (27.8%) | (0.2%) | (3.0%) | 11 910 | | Marlboro Drive and Lilium Avenue/South | 38 101 | 1 256 | 140 | 1 554 | 44.054 | | Road - Intersection 2 | (92.8%) | (3.1%) | (0.3%) | (3.8%) | 41 051 | | Impala Road and South Road – | 21 868 | 725 | 58 | 465 | 00.440 | | Intersection 3 | (94.6%) | (3.1%) | (0.3%) | (2.0%) | 23 116 | | Western Service Road and Wendy Road - | 5 831 | 217 | 31 | 52 | 6 131 | | Intersection 4 | (95.1%) | (3.5%) | (0.5%) | (0.9%) | 0 131 | | Western Service Road and Carnation | 6 328 | 211 | 31 | 53 | 6 622 | | Street - Intersection 5 |
(95.5%) | (3.2%) | (0.5%) | (0.8%) | 6 623 | | Western Service Road and Harrowdene | 7 403 | 124 | 43 | 56 | 7 626 | | Office Park Entrance Road – Intersection 6 | (97.1%) | (1.6%) | (0.6%) | (0.7%) | | | Western Service Road and The | 9 100 | 145 | 46 | 111 | 9 402 | | Woodlands Office Park Entrance Road – Intersection 7 | (96.8%) | (1.5%) | (0.5%) | (1.2%) | | | Western service Road/Jessica Close & | 28 568 | 435 | 65 | 297 | 29 365 | | Woodlands Drive – Intersection 8 | (97.3%) | (1.5%) | (0.2%) | (1.0%) | | | Woodlands Drive and Lincoln Street – | 18 840 | 411 | 32 | 213 | 19 946 | | Intersection 9 | (96.6%) | (2.1%) | (0.2%) | (1.1%) | 19 940 | | Woodlands Drive and The Woodlands | 16 335 | 413 | 37 | 164 | 10.040 | | Office Park Entrance Road/Country Club Estate - Intersection 10 | (96.4%) | (2.4%) | (0.2%) | (1.0%) | 16 949 | | Woodlands Drive and The Woodlands | 13 403 | 403 | 39 | 139 | 13 984 | | Office Park Entrance Road/Pestle Street - Intersection 11 | (95.8%) | (2.9%) | (0.3%) | (1.0%) | 13 904 | | Woodmead Drive & Woodlands Drive – | 59 732 | 2 376 | 243 | 1 090 | 63 432 | | Intersection 12 | (94.2%) | (3.7%) | (0.4%) | (1.7%) | | | The average modal split on all intersections | 93.5% | 4.7% | 0.3% | 1.5% | | The average modal split on all intersections is #### 5 CAPACITY ANALYSIS The following design scenarios were adopted for the purpose of this investigation: • 2022 existing weekday AM, Midday and PM peak hour traffic demand #### 5.1 Level of Service (LOS) The criteria for LOS are based on the Highway Capacity Manual 2010 as summarized in *Table 5*. At the very least a LOS D has to be obtained for the traffic flow to be perceived as acceptable. The performance of the intersections is based on the average delay in seconds. Table 5: Level of Service criteria | | UNS | IGNALIZED INTERSECTION | | | | | | |------------------------------------|---------------------------|--|--|--|--|--|--| | Average Control
Delay (sec/veh) | Level of
Service (LOS) | Expected Delay to Minor Street Traffic | | | | | | | 0 - 10.0 | Α | Free Flow | | | | | | | > 10.0 - 15.0 | В | Stable Flow (slight delays) | | | | | | | > 15.0 - 25.0 | С | Stable Flow (acceptable delays) | | | | | | | > 25.0 - 35.0 | D | Approaching unstable flow (tolerate delay, occasionally wait | | | | | | | > 35.0 - 50.0 | E | Very long traffic delays | | | | | | | > 50.0 | F | * | | | | | | | | SIG | NALIZED INTERSECTION | | | | | | | | | | | | | | | | Average Control
Delay (sec/veh) | Level of
Service (LOS) | Expected Delay | | | | | | | | | Expected Delay Free Flow | | | | | | | Delay (sec/veh) | Service (LOS) | | | | | | | | Delay (sec/veh) ≤ 10 | Service (LOS) | Free Flow | | | | | | | Delay (sec/veh) ≤ 10 >10 - 20 | Service (LOS) A B | Free Flow
Stable Flow (slight delays) | | | | | | ^{*} When demand volume exceeds the capacity of the lane, extreme delays will be encountered. With the increase in delays, increase in queue lengths will be encountered causing congestion. This condition usually warrants improvement to the intersection. ### 5.2 SIDRA Analysis >80 The following scenarios were analysed, using the SIDRA computer package: Zania Drive and Lilium Avenue (intersection 1) F - Marlboro Drive (M60) and Lilium Avenue (Intersection 2) - Impala Road and South Road (Intersection 3) - Western Service Road and Wendy Road (Intersection 4) - Western Service Road and Carnation Street (Intersection 5) - Western Service Road and Harrowdene Office Park Entrance Road (Intersection 6) - Western Service Road and The Woodlands Office Park Entrance Road (Intersection 7) - Woodlands Drive and Western Service Road (Intersection 8) - Woodlands Drive and Lincoln Street (Intersection 9) - Woodlands Drive and The Woodlands Office Park Entrance Road/Country Club Estate (Intersection 10) - Woodlands Drive and The Woodlands Office Park Entrance Road/Pestle Street (Intersection 11) - Woodmead Drive & Woodlands Drive (Intersection 12) • Intersections with level of service A, B and C, depict an average delay in traffic which is acceptable. Intersections with level of service D, depict an average delay in traffic which is acceptable but will soon become unacceptable should traffic volumes increase. Intersections with level of service E and F, depict an average delay in traffic which is unacceptable Table 6 and Table 9 show the current Levels of Service (LOS) for Intersections 1,2,3,4,5,6,7,8,9,10,11 and 12 with corresponding traffic volumes, peak times and average delays on each intersection for the morning peak, midday peak and afternoon peak periods. The level of service for intersection 4,5, 6, 7, 8, 10, 11 and 12 is currently within acceptable standards and for intersection 1, 2,3,and 9 is currently not within acceptable standards for the morning peak periods. The level of service for intersection 1,2,4,5, 6, 7,8,10 and 11 is currently within acceptable standards and intersections 3, 9 and 12 is not within acceptable standards for the midday peak periods. The level of service for intersection 4,5, 6, 7,8,10 and 11 is currently within acceptable standards and intersections 1,2, 3, 9 and 12 is not within acceptable standards for the affternoon peak periods. Table 6: 2022 Morning, Midday and Afternoon Peak times with corresponding LOS | Intersection Name | Intersection Type | Morning
Peak Times | Morning Peak
LOS | Midday
Peak Times | Midday Peak
LOS | Afternoon
Peak Times | Afternoon Peak
LOS | |---|-------------------------------------|-----------------------|-------------------------|----------------------|-------------------------|-------------------------|-------------------------| | Zinia Drive and Lilium Avenue -
Intersection 1 | Unsignalised,3
Way Stop | 07:15-08:15 | F | 14:00-15:00 | С | 16:30-17:30 | E | | Marlboro Drive and Lilium
Avenue/South Road - Intersection 2 | Signalised,4 Ways | 07:00-08:00 | F | 14:00-15:00 | D | 16:15-17:15 | Е | | South Road and Impala Road –
Intersection 3 | Unsignalised, Stop
on minor road | 07:15-08:15 | N/A*
(Northbound: F) | 09:00-10:00 | N/A*
(Northbound: F) | 16:15-17:15 | N/A*
(Northbound: F) | | Western Service Road and Wendy
Road - Intersection 4 | Unsignalised, Stop
on minor road | 07:15-08:15 | N/A*
(Westbound: B) | 13:30-14:30 | N/A*
(Westbound: A) | 16:15-17:15 | N/A*
(Westbound: A) | | Western Service Road and Carnation
Street - Intersection 5 | Unsignalised, Stop
on minor road | 07:15-08:15 | N/A*
(Northbound: B) | 13:30-14:30 | N/A*
(Northbound: A) | 16:15-17:15 | N/A*
(Northbound: B) | | Western Service Road and
Harrowdene Office Park Entrance
Road – Intersection 6 | Unsignalised,3
Way Roundabout | 07:30-08:30 | А | 13:30-14:30 | А | 16:15-17:15 | А | | Western Service Road and The
Woodlands Office Park Entrance Road
– Intersection 7 | Unsignalised,3
Way Roundabout | 07:15-08:15 | А | 13:45-14:45 | А | 16:15-17:15 | А | | Western service Road/Jessica Close & Woodlands Drive – Intersection 8 | Signalised,4 Ways | 07:30-08:30 | D | 13:45-14:45 | В | 16:15-17:15 | В | | Woodlands Drive and Lincoln Street –
Intersection 9 | Unsignalised, Stop
on minor road | 07:30-08:30 | N/A*
(Northbound: F) | 13:45-14:45 | N/A*
(Northbound: F) | 16:30-17:30 | N/A*
(Northbound: F) | | Woodlands Drive and The Woodlands Office Park Entrance Road/Country Club Estate - Intersection 10 | Signalised,4 Ways | 07:30-08:30 | С | 14:00-15:00 | С | 16:30-17:30 | С | | Woodlands Drive and The Woodlands
Office Park Entrance Road/Pestle
Street -Intersection 11 | Signalised,4 Ways | 07:15-08:15 | А | 12:30-13:30 | А | 16:30-17:30 | А | | Woodmead Drive & Woodlands Drive — Intersection 12 | Signalised,4 Ways | 07:30-08:30 | D | 12:15-13:15 | Е | 16:15-17:15 | F | ^{*}Intersection LOS and Major Road Approach LOS values are not applicable for two-way sign control intersection since the average delay is not a good LOS measure due to zero delays associated with major road lanes Table 7: 2022 Morning, Midday and Afternoon Peak with corresponding LOS and average delays | Intersection Name | Intersection Type | Morning Peak Average Delays(sec) | Morning Peak
LOS | Midday
Peak
Average
Delays(sec) | Midday Peak
LOS | Afternoon
Peak
Average
Delays(sec) | Afternoon Peak
LOS | | |---|-------------------------------------|----------------------------------|-------------------------|--|-------------------------|---|-------------------------|--| | Zinia Drive and Lilium Avenue -
Intersection 1 | Unsignalised,3
Way Stop | 162.4 | F | 19.0 | С | 36.6 | E | | | Marlboro Drive and Lilium
Avenue/South Road - Intersection 2 | Signalised,4 Ways | 94.5 | F | 44.3 | D | 59.9 | Е | | | South Road and Impala Road –
Intersection 3 | Unsignalised, Stop
on minor road | 976.5 | N/A*
(Northbound: F) | 25.5 | N/A*
(Northbound: F) | 204.8 | N/A*
(Northbound: F) | | | Western Service Road and Wendy
Road - Intersection 4 | Unsignalised, Stop
on minor road | 2.4 | N/A*
(Westbound: B) | 2.3 | N/A*
(Westbound: A) | 2.3 | N/A*
(Westbound: A) | | | Western Service Road and Carnation
Street - Intersection 5 | Unsignalised, Stop
on minor road | 2.6 | N/A*
(Northbound: B) | 1.8 | N/A*
(Northbound: A) | 1.5 | N/A*
(Northbound: B) | | | Western Service Road and
Harrowdene Office Park Entrance
Road – Intersection 6 | Unsignalised,3
Way Roundabout | 5.1 | А | 4.5 | А | 4.6 | А | | | Western Service Road and The
Woodlands Office Park Entrance Road
– Intersection 7 | Unsignalised,3
Way Roundabout | 5.2 | А | 4.8 | А | 5.0 | А | | | Western
service Road/Jessica Close & Woodlands Drive – Intersection 8 | Signalised,4 Ways | 38.3 | D | 12.7 | В | 13.4 | В | | | Woodlands Drive and Lincoln Street –
Intersection 9 | Unsignalised, Stop
on minor road | 255.3 | N/A*
(Northbound: F) | 10.6 | N/A*
(Northbound: F) | 110.7 | N/A*
(Northbound: F) | | | Woodlands Drive and The Woodlands Office Park Entrance Road/Country Club Estate - Intersection 10 | Signalised,4 Ways | 28.1 | С | 23.7 | С | 26.9 | С | | | Woodlands Drive and The Woodlands
Office Park Entrance Road/Pestle
Street -Intersection 11 | Signalised,4 Ways | 8.5 | А | 9.2 | А | 9.0 | А | | | Woodmead Drive & Woodlands Drive - Intersection 12 | Signalised,4 Ways | 49.6 | D | 75.7 | E | 131.0 | F | | ^{*}Intersection LOS and Major Road Approach LOS values are not applicable for two-way sign control intersection since the average delay is not a good LOS measure due to zero delays associated with major road lanes #### 6 OUTCOMES OF TRAFFIC ANALYSIS FOR CONSTRUCTION SCENARIO The Woodmead pipeline crosses several roads and the proposed method of construction on each road crossing is indicated on Table 11 below, Table 8: Proposed Woodmead pipeline method of construction on each road crossing | Road Name | Proposed Method of Construction | |-----------------------------|---------------------------------| | Zinnia Drive | Open Trenching | | Gazania Crescent | Open Trenching | | Marigold Cresset | Open Trenching | | Lilium Avenue | Open Trenching | | Marlboro Drive | Pipe Jacking | | South Road | Pipe Jacking | | Woodlands Drive | Pipe Jacking | | Lincoln Street | Open Trenching | | Alexandra Taxi Rank
Road | Open Trenching | #### 6.1 Construction of Woodmead pipeline under Woodlands drive The Woodmead pipeline will be constructed under the road on Woodlands Drive (from Lincoln Street to Jessica Close), these locations are clearly indicated in Figure 2 (the pipeline on Woodland Drive is indicated with a purple colour). #### 6.1.1 Woodlands Drive Traffic analysis during construction The existing eastbound left lane on Woodlands Drive will be used as a working area for the excavation and installation of the pipeline. The median along Woodlands Drive will be removed to accommodate an additional lane since the left lane will be used for construction purposes. The following intersections will be affected by the anticipated construction conditions along Woodlands drive as indicated in Figure 2: - Western service Road/Jessica Close & Woodlands Drive Intersection 8 - Woodlands Drive and Lincoln Street Intersection 9 The morning, midday and afternoon peak were identified for both intersections and analysed for the anticipated construction conditions. Table 9 below indicates the LOS for the intersections where the road lanes will be reduced for construction purposes. Figure 5 and Figure 6 indicate the layout of the intersection 8 and intersection 9 before and during construction of the Woodmead pipeline. Figure 5: Western service Road/Jessica Close & Woodlands Drive – Intersection 8 layout - Before Construction and During Construction Figure 6: Woodlands Drive and Lincoln Street – Intersection 9 layout - Before Construction and During Construction Table 9: Morning, Midday and Afternoon Peak with corresponding LOS during construction for intersections along Woodlands Drive | Intersection Name | Intersection Type | Morning
Peak
Average
Delays(sec) | Morning Peak
LOS | Midday
Peak
Average
Delays(sec) | Midday Peak
LOS | Afternoon
Peak
Average
Delays(sec) | Afternoon Peak
LOS | |---|-------------------------------------|---|-------------------------|--|-------------------------|---|-------------------------| | Western service Road/Jessica Close & Woodlands Drive – Intersection 8 | Signalised,4 Ways | 38.3 | D | 12.8 | В | 15.3 | В | | Woodlands Drive and Lincoln Street –
Intersection 9 | Unsignalised, Stop
on minor road | 182,7 | N/A*
(Northbound: F) | 6.4 | N/A*
(Northbound: F) | 49.1 | N/A*
(Northbound: F) | It can be noted that intersection 8 and intersection 9 will operate at the same LOS as they were operating before construction (see Table 9) #### 6.1.2 Western Service Road Traffic analysis during construction The Northbound lane will be used as a working area for the excavation and installation of the pipeline along the Western Service Road. A stop and go traffic accommodation will be implemented during construction, the southbound lane will be used for this purpose during construction phase. The working area along the western service road northbound lane will be in 100m intervals. The table below indicates the calculations for the queue length on Western service road during construction. The highest 15 minutes morning peak traffic volumes were used as the worst case scenario for traffic travelling on Western Service Road. The highest 15 minutes midday peak traffic volumes were used as the worst case scenario for traffic travelling on Western Service Road during construction (between 09:00 am and 15:00 pm). The Table below shows all the inputs taken into consideration when calculating the queue length for traffic accommodation during construction. Table 10: Inputs used to calculate the queue length on Western Service Road during construction | Input | Units | | | | | | |-----------------------------------|------------------|--|--|--|--|--| | Length of construction area | 100m (0.1km) | | | | | | | Driving speed | 30km/h | | | | | | | Space per vehicle | 4.5m | | | | | | | Standard delay per vehicle | 3 sec | | | | | | | Total cycle time | 5 min (300 sec) | | | | | | | All red time (to drive the 0.1km) | 0.2min (12 sec) | | | | | | | Minus all red time | 4.6min (276 sec) | | | | | | | Total Cycles (in 15 min) | 3 | | | | | | Table 11: Western Service Road highest 15 minutes morning peak traffic volumes for calculating queue length during construction | Road Name | Proposed Method of
Construction | | |---|------------------------------------|----------------------| | | Phase A (Southbound) | Phase B (Northbound) | | Total Volume (veh/highest
15min/peak hour) | 234 | 144 | | % split of vehicles on the road | 62% | 38% | | Green time (min) | 2.8min | 1.8min | | Max vehicles that can enter | 57 | 35 | | Avg Arrival speed (veh/min) | 15.60 | 9.60 | Table 12: Western Service Road highest 15 minutes morning peak queue length during construction | Min | Sec | Cumulative | Phase A (Southbound) | Cars
delayed | Cars
delayed | Phase B (Northbound) | | | |------|----------|------------|----------------------|-----------------|-----------------|----------------------|--|--| | 2,85 | 170,86 | 170,86 | GREEN | 0 | 27 | RED | | | | 0,20 | 12,00 | 182,86 | RED | 3 | 29 | RED | | | | 1,75 | 105,14 | 288,00 | RED | 30 | 11 | GREEN | | | | 0,20 | 12,00 | 300,00 | RED | 33 | 13 | RED | | | | 2,85 | 170,86 | 470,86 | GREEN | 20 | 40 | RED | | | | 0,20 | 12,00 | 482,86 | RED | 23 | 42 | RED | | | | 1,75 | 105,14 | 588,00 | RED | 50 | 24 | GREEN | | | | 0,20 | 12,00 | 600,00 | RED | 53 | 26 | RED | | | | 2,85 | 170,86 | 770,86 | GREEN | 40 | 53 | RED | | | | 0,20 | 170,86 | 941,71 | RED | 43 | 55 | RED | | | | 1,75 | 170,86 | 1112,57 | RED | 70 | 37 | GREEN | | | | 0,20 | 170,86 | 1283,43 | RED | 73 | 39 | RED | | | | Lo | ngest qu | eue (veh) | 73 | 3 | 55 | | | | | Qı | ueue Len | gth (km) | 0.32 | 29 | 0.2 | 248 | | | Table 13: Western Service Road highest 15 minutes midday peak traffic volumes for calculating queue length during construction | Road Name | Proposed Method of
Construction | | |---|------------------------------------|----------------------| | | Phase A (Southbound) | Phase B (Northbound) | | Total Volume (veh/highest
15min/peak hour) | 131 | 127 | | % split of vehicles on the road | 51% | 49% | | Green time (min) | 2.3 | 2.3 | | Max vehicles that can enter | 47 | 45 | | Avg Arrival speed (veh/min) | 9.37 | 8.47 | Table 14: Western Service Road highest 15 minutes midday peak queue length during construction | Min | Sec | Cumulative | Phase A (Southbound) | Cars
delayed | Cars
delayed | Phase B (Northbound) | | |------|----------|------------|----------------------|-----------------|-----------------|----------------------|--| | 2,34 | 140,14 | 140,14 | GREEN | 0 | 20 | RED | | | 0,20 | 12,00 | 152,14 | RED | 2 | 22 | RED | | | 2,26 | 135,86 | 288,00 | RED | 22 | 0 | GREEN | | | 0,20 | 12,00 | 300,00 | RED | 24 | 2 | RED | | | 2,34 | 140,14 | 440,14 | GREEN | 0 | 22 | RED | | | 0,20 | 12,00 | 452,14 | RED | 2 | 24 | RED | | | 2,26 | 135,86 | 588,00 | RED | 22 | 0 | GREEN | | | 0,20 | 12,00 | 600,00 | RED | 24 | 2 | RED | | | 2,34 | 140,14 | 740,14 | GREEN | 0 | 22 | RED | | | 0,20 | 140,14 | 880,28 | RED | 2 | 24 | RED | | | 2,26 | 140,14 | 1020,42 | RED | 22 | 0 | GREEN | | | 0,20 | 140,14 | 1160,56 | RED | 24 | 2 | RED | | | Lo | ngest qu | eue (veh) | 24 | ļ | 24 | | | | Q | ueue Len | gth (km) | 0.10 | 08 | 0.1 | 108 | | The longest possible queue in vehicles that will be recorded on Western Service Road during the construction of the pipeline is 73 veh and they will stretch over a distance of 329m (this is based on the highest 15 minutes peak). The longest queue in vehicles that will be recorded between 09:00 and 15:00 on Western Service Road during the construction of the pipeline is 24veh and they will stretch over a distance of 108m (this is based on the highest 15 minutes midday peak). #### 7 PUBLIC TRANSPORT Public transport will play an important role due to some public transport vehicles and pedestrians observed in the surrounding area. Public transport will not be allowed to stop within or adjacent to the construction site, therefore
public transport facilities are to be accommodated outside the construction site along the roads where construction will take place. #### 8 NON-MOTORISED TRANSPORT Non-Motorized Transport (NMT) includes walking (walking is the most familiar form of NMT), bicycling and other forms such as small wheeled transport (skates, skateboards, push scooter and hand carts) and wheelchair travel. These modes of transportation provide both recreation (they are an end in themselves) and transportation (they provide access to goods and activities). Though, users may consider a particular trip to serve both objectives. For example, some users may choose to walk or cycle rather than drive simply because they enjoy walking or cycling, although it takes longer. The definition of NMT includes any form of transportation that provides personal or goods mobility by methods other than the combustion motor. Sustainability of a transport system requires integration of all modes of transport inclusive of NMT. NMT plays a leading role in previously disadvantaged communities, and it is an affordable mode of transport. It is important to provide safe NMT infrastructure, such as pedestrian walkways and/or cycling lanes. There are many benefits to NMT, which include environmental benefits, increased liveability, improved health, economic gains and transport benefits. Some of the benefits can even lead to further advantages such as reduction in accidents and travelling time savings. Pedestrians are to be accommodated during construction of the proposed pipelines. Temporary walkways with universal access designs(to accommodate wheelchairs, strollers and the elderly) are to be incoporated in the traffic management plan of the construction of the proposed pipeline. The proposed walkways width must be a minimum of 1.5m. It is therefore recommended that NMT and universal access facilities be incorporated during the construction of the proposed Woodmead pipeline. #### 9 TRAFFIC MANAGEMENT PLAN The traffic assessement indicates that traffic is low during the off peak peak period betweeen 09:00 and 15:15, this will be the ideal time for construction to take place as there will be less traffic on the roads. A comprehensive traffic management plan for the construction phase must be designed for each intersection, access and also along the roads where the proposed pipeline will be installed. A traffic management plan such as stop and go with temporary warning traffic signs and barricades on areas where the pipiline will be installed under the road is to be implemented. A detour for traffic passing through the construction area during the night is to be provided and access to the area is to be given to residence only, temporary warning traffic signs and information boards are to be implemented to guide the vehicles well in advance. Traffic accommodation/management plans must be compiled in accordance to the South African Road Traffic Signs Manual (SARTSM) and be submitted to the affected stakeholders and the relevant road authority for approval. #### 10 CONCLUSION Given the findings in the report, the following conclusions are drawn: - Woodmead Water Upgrading project area is located on the North-Eastern side of Johannesburg in Region E. - The proposed pipeline is located in Woodmead along the following routes: - Zinnia Drive; - Lilium Avenue; - South Road; - Western Service Road; - Woodmead Drive; - Woodlands Drive; - Lincoln Street; and - Jessica Close. - The pipeline will cross the following routes: - Zinnia Drive; - Road within Alexandra Taxi Rank; - Gazania Crescent; - Marigold Cresset; - Lilium Avenue; - Marlboro Drive; - South Road; - o Woodlands Drive; and - Lincoln Street. - Traffic counts were conducted on the 3rd of November 2022 over a period of 14 hrs and 24hrs on intersections where the proposed Woodmead Water pipeline will be located and also on intersections where the proposed Woodmead Water pipeline will cross - The morning peak is between 06:45 to 09:00, the midday peak is between 12:00 to 15:00 and the afternoon peak is between 15:15 to 17:45 at all respective intersections - The lowest traffic volumes during the day are between 09:00 and 15:15 - The early morning peak for intersection 7 and intersection 8 is between 04:30 to 05:30 and the late night peak is between 20:00 to 21:00 or both intersections. - The 3 Filling stations along the proposed Woodmead pipeline route attract traffic volumes of between 1 678 and 3 737 over a 24hr period. - Dunwoody Shopping Centre along Western Service Road attracts traffic volumes of between 983 and 1 363 over a 24hr period. - The average modal split on all intersections is made up of Light Vehicles (LV) at about 94% followed by Heavy Vehicles (HV) at about 1% then Taxis at about 4% and Buses at about 1%. - The level of service for intersection 4,5, 6, 7,10 and 11 is currently within acceptable standards and for intersection 1, 2,3,8,and 9 is currently not within acceptable standards for the morning peak periods. - The level of service for intersection 1,2,4,5, 6, 7,8,10 and 11 is currently within acceptable standards and intersections 3, and 9 is not within acceptable standards for the midday peak periods. - The level of service for intersection 2,4,5, 6, 7,8,10 and 11 is currently within acceptable standards and intersections 1,3, and 9 is not within acceptable standards for the affternoon peak periods - The existing eastbound left lane on Woodlands Drive will be used as a working area for the excavation and installation of the pipeline. - The median along Woodlands Drive will be removed to accommodate an additional lane since the left lane will be used for construction purposes. - Intersection 8 and intersection 9 will operate at the same LOS during construction as they were operating before construction. - The Western Service Road northbound lane will be used as a working area for the excavation and installation of the pipeline along the Western Service Road. - A stop and go traffic accommodation will be implemented during construction on the Western Service Road and the southbound lane will be used for this purpose during the construction phase. - The highest 15 minutes morning peak and midday peak traffic volumes were used as the worst case scenario for calculating the queue length for the stop and go on Western Service Road during construction phase - The highest number of vehicles that will be delayed on Western Service Road during the construction of the pipeline is 117veh and they will stretch over a distance of 526m. (this is based on the highest 15 minutes morning peak). - The highest number of vehicles that will be delayed between 09:00 and 15:00 on Western Service Road during the construction of the pipeline is 30veh and they will stretch over a distance of 135m. (this is based on the highest 15 minutes midday peak). #### 11 RECOMMENDATIONS The following recommendations are made: - It is recommended that construction takes place only between 09:00 am and 15:00 pm during the construction phase. - A comprehensive traffic management plan for the construction phase must be designed for each intersection, access and also along the roads where the proposed pipeline will be installed. Traffic management plans must be compiled in accordance to the South African Road Traffic Signs Manual (SARTSM) and be submitted to the affected stakeholders and the relevant road authority for approval. - A detour for traffic passing through the construction area during the night is to be provided and access to the area is to be given to residence only, temporary warning traffic signs and information boards are to be implemented to guide the vehicles well in advance. - Access to Properties, Public Transport stops and pedestrians need to be accommodated on the traffic management plans. #### 12 REFERENCES - 1. Committee of Transport Officials, 2013. *TMH 17 South African Trip Data Manual*, Pretoria: SANRAI - 2. Committee of Transport Officials, 2013. TRH 26 South African Road Classification and Access Management Manual, Pretoria: SANRAL. - 3. Department of Transport, 1995. South African Trip Generation Rates. Pretoria: Department of Transport. - 4. Transport Research Board, 2010. *Highway Capacity Manual*. National Research Council Washington DC. - 5. Gauteng Province Roads and Transport, 2014. *Technical Requirements for Partial and Marginal Accesses on Gauteng Provincial Roads*. Gauteng: GPDRT. - 6. Urban Transport Guidelines (UTG 1), Guidelines for the Geometric Design of Urban Arterial Roads. - 7. South African Road Traffic Signs Manual (SARTSM), Volume 2. - 8. South African Road Traffic Signs Manual (SARTSM), Volume 3. - 9. Committee of Transport Officials, 2014. TRH 16 South African Traffic Impact and Site traffic Assessment Standards and Requirements Manual, Volume 2 SANRAL. - 10. Committee of Transport Officials, 2012. TRH 16 South African Traffic Impact and Site traffic Assessment Manual, Volume 1: SANRAL. - 11. Department of Transport. Pedestrian and Bicycle Facility Guidelines. August 2003. ### **ANNEXURE A: TRAFFIC COUNT DATA** ### Zania Drive and Lilium Avenue (intersection 1) Traffic Counts Data | LOCATION:
PROJECT NI
SURVEY DA | TE: | Thursda | WOODMEAL
JT2022-219
ay, 03 Novemb | 7
er 2022 | PROJECT TI | ON: | WOODMEAD-TRAFFIC COUNT LILIUM AVE & ZINNIA DR | | | | | | | (Uni | traf | | |--------------------------------------|----------------|---------|---|--------------|------------|----------------|---|----------|---------------|----------|------------|----------------|------|--------------|----------|--| | SURVEY TIN | MES: | 0 | 5H00-19H0 | 0 | KMZ FILE N | R: | P11 | DATA: | J.A.V | TYPE: | TI . | N-14H-5-19- | С | | | | | | | | | | · | | ТОТА | L SUMMA | RY | | | | | | | | | START | ME
END | 1 | ORTHBOUN
2 | ND
3 | 4 | VESTBOUNE
5 | 6 | 7
7 | OUTHBOUI
8 | ND
9 | 10 |
ASTBOUNI
11 | 12 | VOLUME | SUMMARY | | | 05:00 | 05:15 | - | - | - | - | 27 | 4 | 1 | - | 6 | 7 | 11 | - 12 | 56 | | | | 05:15 | 05:30 | - | =: | | - | 28 | 3 | 1 | - | 9 | 12 | 27 | - | 80 | | | | 05:30 | 05:45 | | - | - | - | 33 | 6 | 3
6 | - | 7 | 17 | 29 | - | 95 | | | | 05:45
06:00 | 06:00
06:15 | - | - | - | - | 50
48 | 6 | 5 | - | 16
20 | 22
14 | 36
39 | - | 132 | 3 | | | 06:15 | 06:30 | - | - | - | - | 54 | 6 | 2 | - | 30 | 26 | 48 | - | 166 | 5 | | | 06:30 | 06:45 | + | - | - | - | 66 | 12 | 10 | - | 12 | 44 | 52 | - | 196 | 6 | | | 06:45 | 07:00 | - | - | - | - | 70 | 25 | 16 | - | 33 | 70 | 60 | - | 274 | 7 | | | 07:00 | 07:15 | - | - | - | - | 88 | 24 | 28 | - | 40 | 77 | 67 | ~ | 324 | 9 | | | 07:15
07:30 | 07:30
07:45 | - | - | - | - | 93 | 46
37 | 32
23 | | 87
81 | 153
124 | 68
65 | - | 479
424 | 12 | | | 07:45 | 08:00 | - | - | - | - | 103 | 34 | 30 | - | 94 | 91 | 61 | - | 413 | 15
16 | | | 08:00 | 08:15 | - | - | - | - | 73 | 28 | 10 | - | 90 | 142 | 70 | - | 413 | 17 | | | 08:15 | 08:30 | - | - | | - | 63 | 22 | 20 | - | 104 | 101 | 62 | × | 372 | 16 | | | 08:30 | 08:45 | - | ĒA | | | 57 | 16 | 18 | - | 62 | 69 | 44 | | 266 | 14 | | | 08:45 | 09:00 | - | - | - | - | 44 | 14 | 8 | - | 53 | 43 | 41 | - | 203 | 12 | | | 09:00
09:15 | 09:15
09:30 | - | - | - | - | 35
34 | 7
16 | 11 | - | 67
63 | 33 | 30
27 | - | 180 | | | | 09:30 | 09:45 | - | - | - | - | 35 | 8 | 9 | _ | 51 | 29 | 31 | - | 163 | | | | 09:45 | 10:00 | - | = 1 | - | - | 36 | 8 | 13 | - | 42 | 34 | 47 | - | 180 | 7 | | | 10:00 | 10:15 | - | | - | - | 45 | 7 | 10 | <u>-</u> | 29 | 41 | 27 | | 159 | 6 | | | 10:15 | 10:30 | | - | - | - | 41 | 15 | 12 | - | 32 | 24 | 41 | - | 165 | 6 | | | 10:30 | 10:45 | - | - | - | - | 32 | 11 | 5 | - | 33 | 18 | 29 | - | 128 | 6 | | | 10:45
11:00 | 11:00
11:15 | - | - | - | - | 33
39 | 9 | 12 | - | 35
33 | 27 | 38 | - | 150
152 | 5 | | | 11:15 | 11:30 | - | - | - | - | 34 | 18 | 9 | - | 40 | 36 | 35 | - | 172 | 6 | | | 11:30 | 11:45 | - | - | - | - | 23 | 21 | 9 | - | 34 | 16 | 30 | - | 133 | 6 | | | 11:45 | 12:00 | + | - | - | - | 25 | 23 | 11 | - | 38 | 25 | 34 | - | 156 | 6 | | | 12:00 | 12:15 | - | - | - | - | 31 | 11 | 18 | - | 35 | 23 | 46 | - | 164 | 6 | | | 12:15 | 12:30 | - | - | - | - | 45 | 23 | 34 | - | 27 | 26 | 38 | 7-1 | 193 | 6 | | | 12:30
12:45 | 12:45
13:00 | - | - | - | - | 49
36 | 23
10 | 20
10 | - | 41
30 | 42
24 | 40
37 | | 215
147 | 7 | | | 13:00 | 13:15 | - | - | - | - | 44 | 8 | 22 | - | 29 | 33 | 50 | - | 186 | 7 | | | 13:15 | 13:30 | - | - | - | - | 42 | 19 | 18 | - | 32 | 37 | 37 | - | 185 | 7 | | | 13:30 | 13:45 | - | - | - | - | 43 | 11 | 11 | - | 34 | 27 | 35 | - | 161 | 6 | | | 13:45 | 14:00 | - | - | - | - | 41 | 12 | 18 | - | 28 | 24 | 35 | | 158 | 6 | | | 14:00 | 14:15 | - | - | - | - | 44 | 10 | 25 | - | 38 | 28 | 59 | - | 204 | 7 | | | 14:15
14:30 | 14:30
14:45 | - | - | - | - | 52
37 | 25
20 | 27
17 | - | 41
39 | 36
28 | 55
33 | - | 236
174 | 7 | | | 14:45 | 15:00 | _ | - | - | - | 50 | 16 | 22 | - | 36 | 44 | 51 | - | 219 | 8 | | | 15:00 | 15:15 | - | | | - | 43 | 15 | 16 | - | 51 | 32 | 52 | - | 209 | | | | 15:15 | 15:30 | - | - | - | - | 50 | 9 | 8 | - | 48 | 30 | 56 | | 201 | | | | 15:30 | 15:45 | - | - | - | - | 43 | 14 | 14 | - | 46 | 32 | 51 | 2 | 200 | | | | 15:45 | 16:00 | - | - | - | - | 42 | 7 | 14 | - | 50 | 31 | 54 | - | 198 | 8 | | | 16:00
16:15 | 16:15
16:30 | - | - | - | - | 48
51 | 12
17 | 25
17 | - | 65
71 | 36
42 | 61
54 | - | 247 | 8 | | | 16:30 | 16:45 | - | - | - | - | 54 | 7 | 33 | - | 73 | 28 | 85 | - | 280 | 9 | | | 16:45 | 17:00 | 9 | | - | - | 63 | 9 | 24 | ÷ | 67 | 48 | 69 | - | 280 | 10 | | | 17:00 | 17:15 | 9 | - | - | - | 62 | 16 | 25 | - | 74 | 48 | 61 | - | 286 | 10 | | | 17:15 | 17:30 | - | - | - | - | 57 | 9 | 39 | - | 88 | 50 | 47 | - | 290 | 11 | | | 17:30 | 17:45 | - | - | | - | 52 | 19 | 34 | - | 85 | 39 | 45 | | 274 | 11 | | | 17:45
18:00 | 18:00
18:15 | - | | - | - | 50
50 | 18
12 | 30 | - | 70
56 | 32
29 | 49
51 | - | 249 | 10 | | | 18:15 | 18:30 | - | - | - | - | 46 | 14 | 20 | - | 42 | 16 | 25 | - | 163 | 9 | | | 18:30 | 18:45 | - | - | - | - | 47 | 14 | 33 | - | 44 | 17 | 49 | - | 204 | 8 | | | 18:45 | 19:00 | - | - | | - | 40 | 20 | 21 | - | 37 | 27 | 24 | - | 169 | 7 | | | TO | ΓAL | - | - | - | - | 2 715 | 841 | 949 | - | 2 618 | 2 257 | 2 530 | - | 11 910 | | | ## Marlboro Drive (M60) and Lilium Avenue (Intersection 2) Traffic counts Data | LOCATION: | | V | VOODMEAD |) | PROJECT TIT | ILE: | | | WOODM | EAD-TRAFFI | C COUNT | | | | | |----------------|----------------|----------|--------------|----------|--------------|------------|------------|------------|----------|------------|-----------|-------------|----------|--------------|------------| | PROJECT N | R: | | T2022-219 | | | | | | | | | | hitraf | | | | URVEY DA | | | y, 03 Novemb | | INTERSECTION | , | | | | | | | | | IILI di | | URVEY TIN | ΛES: | 05 | 5H00-19H0 | 0 | KMZ FILE NF | ₹: | P9 | DATA: | J.A.V | TYPE: | 40 | V-14H-5-19- | -C | | | | | | | | | | | TOTA | L SUMMAI | RY | | | | | | 1 | | | ME NORTHBOUND | | | | | ESTBOUN | | | UTHBOUN | | EASTBOUND | | | | ME SUMMARY | | START | 05:15 | 1 | 2 5 | 3 8 | 4 | 5 | 6 22 | 7 | 8 2 | 9 | 10 2 | 11
24 | 12 | TOTAL
121 | | | 05:00
05:15 | 05:15 | - 2 | 4 | 8 | 5 | 35
49 | 37 | 16
19 | 2 | - | - | 19 | - 3 | 145 | | | 05:30 | 05:45 | 1 | 8 | 10 | 6 | 55 | 43 | 34 | 7 | - | 5 | 27 | 3 | 199 | | | 05:45 | 06:00 | 4 | 9 | 7 | 12 | 89 | 70 | 44 | 5 | - | 3 | 60 | 3 | 306 | | | 06:00 | 06:15 | 9 | 9 | 16 | 14 | 120 | 85 | 52 | 11 | 2 | 9 | 66 | 7 | 400 | | | 06:15 | 06:30 | 11 | 19 | 17 | 7 | 156 | 167 | 62 | 8 | 1 | 8 | 90 | 4 | 550 | | | 06:30
06:45 | 06:45
07:00 | 17
19 | 28
46 | 21
39 | 7 11 | 182
187 | 207
219 | 95
121 | 12
11 | 5 | 14
21 | 96
118 | 9
10 | 693
807 | | | 07:00 | 07:15 | 25 | 69 | 34 | 16 | 224 | 287 | 196 | 27 | 9 | 16 | 130 | 5 | 1 038 | | | 07:15 | 07:30 | 24 | 81 | 51 | 12 | 220 | 247 | 211 | 36 | 8 | 32 | 133 | 13 | 1 068 | | | 07:30 | 07:45 | 25 | 79 | 39 | 11 | 178 | 292 | 181 | 39 | 13 | 31 | 132 | 10 | 1 030 | | | 07:45 | 08:00 | 16 | 84 | 36 | 18 | 180 | 272 | 166 | 43 | 8 | 42 | 145 | 10 | 1 020 | | | 08:00 | 08:15 | 17 | 54 | 37 | 7 | 199 | 274 | 164 | 33 | 16 | 21 | 104 | 12 | 938 | | | 08:15
08:30 | 08:30
08:45 | 16
20 | 47
34 | 41
23 | 6
12 | 206
165 | 256
206 | 143
127 | 36
18 | 15
15 | 24
25 | 108
123 | 12
18 | 910
786 | | | 08:45 | 09:00 | 21 | 26 | 29 | 10 | 201 | 175 | 127 | 25 | 9 | 13 | 107 | 7 | 743 | | | 09:00 | 09:15 | 10 | 17 | 17 | 9 | 172 | 187 | 134 | 18 | 7 | 19 | 134 | 8 | 732 | | | 09:15 | 09:30 | 10 | 10 | 15 | 9 | 183 | 204 | 115 | 13 | 13 | 17 | 125 | 21 | 735 | | | 09:30 | 09:45 | 18 | 19 | 19 | 10 | 185 | 177 | 110 | 8 | 8 | 23 | 143 | 7 | 727 | | | 09:45 | 10:00 | 11 | 14 | 11 | 26 | 163 | 158 | 122 | 21 | 11 | 17 | 136 | 6 | 696 | | | 10:00 | 10:15 | 11 | 20 | 16 | 15 | 167 | 120 | 109 | 14 | 12 | 20 | 138 | 11 | 653 | | | 10:15
10:30 | 10:30
10:45 | 10
13 | 20 | 28
16 | 6 | 158
172 | 141
145 | 127
123 | 23
18 | 9
15 | 9 23 | 136
138 | 11
9 | 678
712 | | | 10:45 | 11:00 | 9 | 15 | 13 | 20 | 165 | 133 | 123 | 13 | 7 | 23 | 153 | 12 | 686 | | | 11:00 | 11:15 | 15 | 21 | 12 | 12 | 172 | 114 | 106 | 23 | 10 | 18 | 157 | 11 | 671 | | | 11:15 | 11:30 | 15 | 13 | 20 | 13 | 157 | 133 | 125 | 17 | 21 | 16 | 149 | 16 | 695 | | | 11:30 | 11:45 | 20 | 18 | 22 | 12 | 142 | 128 | 125 | 17 | 18 | 18 | 136 | 6 | 662 | | | 11:45 | 12:00 | 11 | 16 | 20 | 26 | 174 | 120 | 112 | 24 | 6 | 13 | 149 | 16 | 687 | | | 12:00 | 12:15 | 24 | 19 | 20 | 27 | 172 | 98 | 124 | 23 | 12 | 14 | 143 | 16 | 692 | | | 12:15
12:30 | 12:30
12:45 | 19
15 | 22 | 20 | 21 20 | 169
164 | 131
140 | 138
118 | 30 | 13
18 | 13
13 | 155
140 | 14 | 739
718 | | | 12:45 | 13:00 | 7 | 15 | 17 | 23 | 136 | 156 | 135 | 27 | 14 | 13 | 148 | 18 | 709 | | | 13:00 | 13:15 | 15 | 24 | 16 | 20 | 152 | 130 | 142 | 32 | 13 | 20 | 144 | 16 | 724 | | | 13:15 | 13:30 | 13 | 24 | 21 | 20 | 170 | 117 | 163 | 23 | 10 | 20 | 165 | 11 | 757 | | | 13:30 | 13:45 | 17 | 28 | 18 | 14 | 156 | 141 | 145 | 26 | 10 | 17 | 162 | 13 | 747 | | | 13:45 | 14:00 | 9 | 31 | 19 | 24 | 160 | 110 | 139 | 23 | 17 | 31 | 175 | 25 | 763 | | | 14:00 | 14:15 | 16 | 25 | 26 | 28 | 169 | 113 | 177 | 45 | 12 | 15 | 186 | 17 | 829 | | | 14:15
14:30 | 14:30
14:45 | 19
14 | 26
28 | 35
31 | 17
16 | 160
166 | 116
135 | 175
166 | 39
25 | 24
13 | 19
14 | 160
132 | 16
12 | 806
752 | | | 14:45 | 15:00 | 18 | 23 | 17 | 21 | 163 | 115 | 162 | 23 | 10 | 24 | 183 | 24 | 783 | | | 15:00 | 15:15 | 5 | 30 | 30 | 24 | 145 | 105 | 195 | 29 | 20 | 18 | 182 | 10 | 793 | | | 15:15 | 15:30 | 11 | 17 | 22 | 20 | 134 | 134 | 184 | 33 | 11 | 12 | 150 | 18 | 746 | | | 15:30 | 15:45 | 13 | 28 | 29 | 13 | 141 | 120 | 213 | 39 | 21 | 12 | 155 | 19 | 803 | | | 15:45 | 16:00 | 15 | 25 | 17 | 13 | 148 | 123 | 234 | 28 | 12 | 23 | 188 | 13 | 839 | | | 16:00
16:15 | 16:15
16:30 | 7 | 20 | 13
16 | 19 | 139
146 | 121
166 | 268
299 | 50
60 | 32
38 | 21 | 194
166 | 21
17 | 905
983 | | | 16:30 | 16:30 | 5 | 19 | 18 | 16 | 150 | 161 | 315 | 53 | 40 | 15 | 177 | 16 | 985 | | | 16:45 | 17:00 | 7 | 32 | 23 | 11 | 165 | 176 | 259 | 61 | 22 | 14 | 170 | 26 | 966 | | | 17:00 | 17:15 | 14 | 27 | 33 | 22 | 155 | 177 | 274 | 62 | 16 | 6 | 178 | 17 | 981 | | | 17:15 | 17:30 | 5 | 23 | 27 | 18 | 136 | 162 | 308 | 76 | 31 | 19 | 139 | 29 | 973 | | | 17:30 | 17:45 | 6 | 20 | 25 | 30 | 114 | 153 | 244 | 64 | 23 | 6 | 176 | 23 | 884 | | | 17:45 | 18:00 | 10 | 26 | 23 | 20 | 124 | 137 | 188 | 52 | 6 | 6 | 166 | 22 | 780 | | | 18:00 | 18:15 | 7 | 18 | 18 | 32
19 | 120
114 |
95
93 | 162 | 31 | 3 | 9 | 145 | 17 | 658
593 | | | 18:15
18:30 | 18:30
18:45 | 5 | 13 | 14
7 | 21 | 104 | 102 | 129
133 | 38
27 | 5 | 10 | 134
115 | 26
18 | 555 | | | 18:45 | 19:00 | 13 | 25 | 17 | 17 | 75 | 66 | 124 | 19 | 6 | 6 | 116 | 16 | 500 | | | 10.000 | TAL | 708 | 1 459 | 1 219 | 899 | 8 503 | 8 212 | 8 495 | 1 586 | 699 | 888 | 7 620 | 763 | 41 051 | | ## Impala Road and South Road (Intersection 3) Traffic counts Data | LOCATION: | | ١ | WOODMEA | D | PROJECT TI | TLE: | | | WOODM | IEAD-TRAFFI | C COUNT | | | | | |------------------------|----------------|-----|-----------------------------|-----|-------------|----------------|-------------|----------|---------------|--------------|-----------|----------------|------------------|-----------------|------------| | PROJECT N
SURVEY DA | | | JT2022-219
ay, 03 Novemb | V | INTERSECT | ION: | | | SOUTH RI | D (M74) & IN | //PALA RD | | | (unitra | f | | SURVEY TIM | | | 5H00-19H0 | | KMZ FILE N | R: | P8 | DATA: | J.A.V | TYPE: | 11 | N-14H-5-19- | ·C | | | | | | | | | | | | | - 0 | | | | | | | | T.1 | 45 | N/C | DET LIBOUR | up. | , | (ECTROLIN) | 20.00.00.00 | L SUMMA | 20000 | up. | _ | A CER OLINI | | VOLUME CUMANA | 274 | | START | ME
END | 1 | ORTHBOUI
2 | 3 | 4 | VESTBOUNI
5 | 6 | 7 | OUTHBOUN
8 | 9 | 10 | ASTBOUNI
11 | 12 | TOTAL TOTAL | XY | | 05:00 | 05:15 | - | - | - | - | 30 | - | - | - | 2 | 5 | 17 | - | 54 | | | 05:15 | 05:30 | | 1.5 | | | 37 | 1 | - | 1- | 3 | 2 | 20 | (e) | 63 | | | 05:30 | 05:45 | - | - | - | - | 66 | 1 | 1 | - | 4 | - | 31 | | 103 | | | 05:45
06:00 | 06:00
06:15 | - | - | - | - | 95
106 | 2 | 2 | | 10
8 | 3 | 49
48 | | 160
170 | 380
496 | | 06:15 | 06:30 | - | - | - | - | 157 | 5 | 6 | 1.5 | 10 | 5 | 74 | - | 257 | 690 | | 06:30 | 06:45 | - | - | | - | 231 | 3 | 4 | - | 15 | 15 | 90 | | 358 | 945 | | 06:45 | 07:00 | - | 1- | - | | 238 | 4 | 6 | - | 17 | 19 | 156 | - | 440 | 1225 | | 07:00 | 07:15 | - | - | Ξ. | - | 242 | 9 | 11 | - | 28 | 26 | 216 | - | 532 | 1587 | | 07:15 | 07:30 | - | - | - | - | 320 | 25 | 12 | - | 38 | 46 | 258 | - | 699 | 2029 | | 07:30 | 07:45 | - | - | - | - | 372 | 32 | 14 | | 42 | 47 | 236 | - | 743 | 2414 | | 07:45 | 08:00 | - | - | - | - | 340 | 14 | 16 | - | 41 | 42 | 220 | - | 673 | 2647 | | 08:00 | 08:15
08:30 | - | - | - | - | 357
342 | 27
37 | 19 | - | 38
37 | 31 | 186
210 | - | 658
667 | 2773 | | 08:15 | 08:30 | - | - | - | | 255 | 34 | 10 | - | 50 | 22 | 189 | - | 560 | 2741 | | 08:45 | 09:00 | - | - | - | - | 265 | 10 | 7 | - | 26 | 22 | 144 | - | 474 | 2359 | | 09:00 | 09:15 | - | - | - | - | 250 | 2 | 7 | - | 14 | 25 | 134 | - | 432 | 2333 | | 09:15 | 09:30 | - | - | - | - | 228 | 4 | 9 | - | 22 | 25 | 158 | - | 446 | | | 09:30 | 09:45 | - | - | - | - | 213 | 8 | 7 | - | 26 | 19 | 115 | - | 388 | | | 09:45 | 10:00 | - | | - | | 197 | 10 | 4 | - | 30 | 16 | 106 | | 363 | 1629 | | 10:00 | 10:15 | - | - | - | - | 206 | 9 | 6 | - | 18 | 17 | 125 | - | 381 | 1578 | | 10:15 | 10:30 | - | - | - | - | 177 | 6 | 9 | - | 14 | 22 | 182 | - | 410 | 1542 | | 10:30 | 10:45 | - | (# | - | - | 156 | 3 | 2 | - | 22 | 19 | 136 | - | 338 | 1492 | | 10:45 | 11:00
11:15 | - | - | - | - | 123
165 | 7 | 7 | - | 18
21 | 20
19 | 135
146 | - | 312 | 1441 | | 11:15 | 11:30 | - | - | - | - | 113 | 5 | 16 | - | 19 | 15 | 160 | - | 365
328 | 1425 | | 11:30 | 11:45 | - | - | - | - | 135 | 11 | 1 | - | 7 | 19 | 170 | - | 343 | 1348 | | 11:45 | 12:00 | - | - | - | - | 173 | 7 | 10 | - | 18 | 18 | 124 | - | 350 | 1386 | | 12:00 | 12:15 | - | 12 | - | - | 114 | 7 | 7 | - | 16 | 23 | 150 | - | 317 | 1338 | | 12:15 | 12:30 | - | 1.0 | | 0- | 151 | 4 | 7 | 1.= | 14 | 20 | 158 | o = / | 354 | 1364 | | 12:30 | 12:45 | - | - | - | | 177 | 12 | 26 | - | 35 | 14 | 148 | - | 412 | 1433 | | 12:45 | 13:00 | - | - | - | - | 118 | 5 | 9 | 1-1 | 38 | 20 | 126 | 1-1 | 316 | 1399 | | 13:00 | 13:15 | - | 1.70 | | - 12 | 145 | 3 | 8 | | 15 | 24 | 167 | | 362 | 1444 | | 13:15 | 13:30 | - | - | - | | 159 | 7 | 6 | - | 17 | 21 | 159 | - | 369 | 1459 | | 13:30 | 13:45
14:00 | - | - | - | - | 134
161 | 5 | 5 | - | 17
28 | 20 | 177
161 | - | 358
389 | 1405 | | 14:00 | 14:00 | - | - | - | - | 130 | 5 | 9 | - | 16 | 44 | 203 | - | 407 | 1478 | | 14:15 | 14:30 | - | - | - | - | 166 | 6 | 12 | - | 15 | 20 | 207 | - | 426 | 1580 | | 14:30 | 14:45 | - | - | - | - | 151 | 4 | 3 | - | 20 | 17 | 168 | - | 363 | 1585 | | 14:45 | 15:00 | - | | - | - | 131 | 7 | 5 | - | 19 | 29 | 204 | - | 395 | 1591 | | 15:00 | 15:15 | - | - | - | 1. | 161 | 5 | 9 | - | 21 | 33 | 267 | - | 496 | | | 15:15 | 15:30 | - | - | - | - | 150 | 10 | 7 | - | 24 | 28 | 235 | - | 454 | | | 15:30 | 15:45 | - | - | | 1- | 127 | 4 | 9 | 1- | 20 | 31 | 243 | | 434 | | | 15:45 | 16:00 | - | - | - | - | 162 | 14 | 11 | - | 20 | 21 | 291 | - | 519 | 1903 | | 16:00
16:15 | 16:15
16:30 | - | - | - | - | 147 | 13 | 16 | - | 24
15 | 29
32 | 326
358 | - | 555 | 1962 | | 16:15 | 16:30 | - | - | - | - | 208 | 12 | 14 | - | 16 | 43 | 312 | - | 598
605 | 2106 | | 16:45 | 17:00 | - | - | - | - | 209 | 7 | 9 | - | 21 | 42 | 318 | - | 606 | 2364 | | 17:00 | 17:15 | - | - | - | - | 198 | 6 | 6 | - | 14 | 30 | 345 | - | 599 | 2408 | | 17:15 | 17:30 | - | - | - | - | 180 | 8 | 7 | - | 19 | 40 | 335 | - | 589 | 2399 | | 17:30 | 17:45 | - | - | - | - | 171 | 10 | 5 | - | 12 | 30 | 341 | 120 | 569 | 2363 | | 17:45 | 18:00 | - | 1:- | | - | 135 | 8 | 4 | 15 | 23 | 20 | 252 | - | 442 | 2199 | | 18:00 | 18:15 | ٠ | - | | - | 153 | 4 | - | - | 8 | 14 | 172 | - | 351 | 1951 | | 18:15 | 18:30 | - | | - | - | 108 | 3 | 5 | - | 8 | 14 | 160 | - | 298 | 1660 | | 18:30 | 18:45 | - | - | - | - | 73 | - 1 | 3 | | 2 | 10 | 167 | - | 255 | 1346 | | 18:45 | 19:00 | - | - | - | - | 71
9 752 | 4 | 2
426 | - | 1 101 | 1 260 | 119 | - | 211 | 1115 | | TO | IAL | - | - | - | - | 9 753 | 472 | 426 | - | 1 101 | 1 260 | 10 104 | - | 23 116 | | ## Western Service Road and Wendy Road (Intersection 4) Traffic counts Data | OCATION: | - | V | /OODMEAD | | PROJECT TI | TLE: | | | WOODMI | EAD-TRAFFIC | COUNT | | | | | |-------------------|----------------|----|---------------|-------------|-------------|---------|------|---------|------------|-------------|----------|------------|----|-----------------|-----| | ROJECT N | - | | T2022-2197 | Autota atta | INTERSECTI | ON: | | | WESTERN SE | RVICE RD & | WENDY RD | | | (unitra | f | | JRVEY DA | | | y, 03 Novembe | | | | P.C | | | | | | | ןן טווונו כ | 11 | | JRVEY TIN | VIES: | 0: | 5H00-19H00 | , | KMZ FILE NI | 1. | P6 | DATA: | J.A.V | TYPE: | 4\ | V-14H-5-19 | | | | | | | | | | | | TOTA | L SUMMA | RY | | | | | | | | CONTRACTOR OF THE | ME | | RTHBOUN | | 700 | ESTBOUN | | | OUTHBOUN | | 2000 | ASTBOUN | | VOLUME SUMMA | ARY | | START | END | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | TOTAL | | | 05:00 | 05:15 | 1 | 2 | - | - | - | - | - | 1 | 2 | - | - | 1 | 7 | | | 05:15 | 05:30
05:45 | - | 10 | - | - | - | - | - | 5 | 2 | 1 | | 1 | 11
19 | | | 05:30
05:45 | 06:00 | - | 7 | | - | - | - | - | 7 | 2 | - 1 | - | 2 | 18 | | | 06:00 | 06:15 | 4 | 11 | | - | - | - | - | 17 | 1 | 2 | - | - | 35 | | | 06:15 | 06:30 | 2 | 17 | - | - | - | - | - | 21 | 5 | 4 | - | 3 | 52 | | | 06:30 | 06:45 | 8 | 34 | - | - | - | - | - | 39 | 6 | 5 | - | 8 | 100 | | | 06:45 | 07:00 | 2 | 43 | - | - | - | - | - | 41 | 8 | 4 | - | 7 | 105 | | | 07:00 | 07:15 | 6 | 64 | - | - | | - | - | 75 | 7 | 4 | - | 12 | 168 | | | 07:15 | 07:30 | 17 | 66 | - | - | - | - | - | 79 | 6 | 12 | - | 17 | 197 | | | 07:30 | 07:45 | 16 | 91 | - | - | - | - | - | 108 | 10 | 19 | - | 21 | 265 | | | 07:45 | 08:00 | 7 | 86 | - | - | - | - | - | 110 | 19 | 13 | - | 9 | 244 | | | 08:00 | 08:15 | 13 | 90 | - | - | - | - | - | 86 | 9 | 21 | - | 16 | 235 | | | 08:15 | 08:30 | 9 | 72 | - | - | - | - | - | 60 | 7 | 26 | | 11 | 185 | | | 08:30 | 08:45 | 3 | 61 | - | - | | - | - | 62 | 7 | 8 | | 5 | 146 | | | 08:45 | 09:00 | 8 | 44 | - | - | .=0 | - | - | 50 | 4 | 11 | | 10 | 127 | | | 09:00 | 09:15 | 5 | 34 | - | - | - | - | - | 44 | 4 | 11 | - | 6 | 104 | | | 09:15 | 09:30 | 4 | 36 | 1-1 | - | .=1 | - | - | 41 | 7 | 10 | | 7 | 105 | | | 09:30 | 09:45 | 2 | 21 | - | - | - | - | - | 28 | 7 | 11 | - | 3 | 72 | | | 09:45 | 10:00 | 2 | 30 | - | - | | - | - | 37 | 7 | 8 | - | 9 | 93 | | | 10:00 | 10:15 | 3 | 31 | - | | - | - | - | 25 | 5 | 11 | | 7 | 82 | | | 10:15 | 10:30 | 3 | 29 | | - | - | - | - | 32 | 3 | 5 | | 10 | 82 | | | 10:30 | 10:45 | 5 | 32 | - | - | - | - | - | 31 | 2 | 7 | - | 10 | 87 | | | 10:45 | 11:00 | 5 | 21 | (-) | - | | - | - | 27 | 4 | 9 | - | 7 | 73 | | | 11:00 | 11:15 | 5 | 30 | | | - | - | - | 43 | 7 | 6 | - | 5 | 96 | | | 11:15 | 11:30 | 3 | 29 | - | - | - | - | - | 22 | 4 | 5 | - | 7 | 70 | | | 11:30 | 11:45 | 3 | 29 | | - | - | - | - | 37 | 8 | 9 | - | 7 | 93 | | | 11:45 | 12:00 | 12 | 37 | - | - | - | - | - | 44 | 5 | 8 | - | 5 | 111 | | | 12:00
12:15 | 12:15
12:30 | 11 | 33 | - | - | - | - | - | 45
44 | 8 | 13 | - | 5 | 108 | | | 12:30 | 12:45 | 7 | 29 | | - | - | - | - | 46 | 12 | 15 | - | 3 | 112 | | | 12:45 | 13:00 | 4 | 27 | | - | - | - | - | 46 | 5 | 7 | - | 6 | 95 | - | | 13:00 | 13:15 | 4 | 26 | | - | - | | | 28 | 5 | 11 | - | 3 | 77 | | | 13:15 | 13:30 | 2 | 32 | - | _ | - | _ | _ | 35 | 6 | 8 | - | 7 | 90 | | | 13:30 | 13:45 | 9 | 43 | - | - | - | - | - | 47 | 4 | 11 | - | 7 | 121 | | | 13:45 | 14:00 | 8 | 47 | - | - | - | - | - | 34 | 11 | 5 | - | 12 | 117 | | | 14:00 | 14:15 | 3 | 54 | - | - | - | - | _ | 70 | 11 | 14 | - | 22 | 174 | | | 14:15 | 14:30 | 5 | 43 | - | - | - | - | - | 50 | 6 | 14 | - | 8 | 126 | | | 14:30 | 14:45 | 3 | 41 | - | - | - | - | - | 44 | 10 | 7 | - | 9 | 114 | | | 14:45 | 15:00 | 8 | 34 | - | - | - | - | - | 42 | 15 | 14 | - | 9 | 122 | | | 15:00 | 15:15 | 7 | 21 | - | - | - | - | - | 70 | 5 | 13 | | 7 | 123 | | | 15:15 | 15:30 | 6 | 25 | - | - | - | - | - | 105 | 18
 12 | - | 6 | 172 | | | 15:30 | 15:45 | 5 | 35 | - | - | | - | - | 91 | 12 | 9 | | 6 | 158 | | | 15:45 | 16:00 | 7 | 29 | - | - | - | - | - | 10 | - | 8 | - | 6 | 60 | | | 16:00 | 16:15 | 4 | 40 | | - | - | - | - | 18 | 2 | 7 | | 6 | 77 | | | 16:15 | 16:30 | 9 | 38 | - | - | - | - | - | 73 | 11 | 11 | - | 18 | 160 | | | 16:30 | 16:45 | 14 | 39 | - | - | - | - | - | 87 | 19 | 13 | - | 10 | 182 | | | 16:45 | 17:00 | 16 | 27 | - | - | - | - | - | 54 | 6 | 11 | - | 4 | 118 | | | 17:00 | 17:15 | 8 | 44 | - | - | - | - | - | 78 | 6 | 14 | • | 9 | 159 | | | 17:15 | 17:30 | 15 | 42 | - | - | - | - | - | 56 | 14 | 10 | - | 6 | 143 | | | 17:30 | 17:45 | 4 | 38 | - | - | - | - | - | 54 | 7 | 8 | | 4 | 115 | | | 17:45 | 18:00 | 4 | 27 | | - | - | - | - | 33 | 5 | 11 | - | 1 | 81 | | | 18:00 | 18:15 | 14 | 22 | - | - | 121 | - | - | 34 | 8 | 7 | - | 2 | 87 | | | 18:15 | 18:30 | 6 | 20 | - | - | | - | - | 28 | 7 | 12 | | 6 | 79 | | | 18:30 | 18:45 | 3 | 13
11 | - | - | - | - | - | 14 | 5 | 5 | - | - | 40
37 | | | 18:45 | 19:00 | | | 9-6 | - | - | - | - | 16 | 4 | 3 | - | 2 | | | ## Western Service Road and Carnation Street (Intersection 5) Traffic counts Data | OCATION: | | | /OODMEAD | | PROJECT TI | TLE: | | | WOODMI | EAD-TRAFFI | C COUNT | | | | |-----------------------|----------------|-----|-------------|-----|---------------|----------|------|----------|------------|-------------|------------|-------------|-----|----------------| | ROJECT N | | | T2022-219 | | INTERSECTI | ON: | | W | ESTERN SER | VICE RD & C | ARNATION S | T | | Unitraf | | JRVEY DA
JRVEY TIN | | | , 03 Novemb | | KMZ FILE NI | | P7 | DATA: | | | | | | | | SAVET III | VIES. | 05 | 1100-1340 | 0 | KIVIZ FILE IV | N. | P/ | DATA. | J.A.V | TYPE: | IV | V-14H-5-19- | | | | | | | | | | | TOTA | AL SUMMA | RY | | | | | | | TII | ME | NO | RTHBOUN | ND | W | /ESTBOUN | | _ | UTHBOUN | ID | E/ | ASTBOUNE |) | VOLUME SUMMARY | | START | END | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | TOTAL | | 05:00 | 05:15 | 2 | 1 | - | - | - | 11=1 | - | 3 | - | 1= | 121 | 1 | 7 | | 05:15 | 05:30 | 1 | 4 | - | | - | 1.5 | - | 3 | 2 | 1 | - | 3 | 14 | | 05:30 | 05:45 | 3 | 7 | - | - | - | - | - | 3 | 1 | 1- | - | 3 | 17 | | 05:45 | 06:00 | 3 | 4 | - | - | - | | - | 6 | = | 1 | - | 4 | 18 | | 06:00 | 06:15 | 1 | 13 | - | - | = 1 | - | - | 12 | - | 3 | - | 4 | 33 | | 06:15 | 06:30 | 6 | 15 | 1-1 | | - | - | - | 22
30 | 2 | 3 | - | 8 | 53
83 | | 06:30
06:45 | 06:45
07:00 | 9 | 31 | - | - | - | - | - | 39 | 7 | 8 | - | 20 | 113 | | 07:00 | 07:00 | 17 | 59 | - | - | - | - | - | 99 | 11 | 19 | - | 21 | 226 | | 07:15 | 07:30 | 21 | 64 | - | - | - | - | - | 112 | 18 | 15 | - | 17 | 247 | | 07:30 | 07:45 | 23 | 116 | - | - | | _ | _ | 120 | 14 | 28 | _ | 22 | 323 | | 07:45 | 08:00 | 8 | 109 | - | | | | _ | 105 | 10 | 18 | - | 16 | 266 | | 08:00 | 08:15 | 10 | 104 | - | - | - | - | | 89 | 9 | 13 | | 10 | 235 | | 08:15 | 08:30 | 6 | 92 | - | - | | - | - | 54 | 2 | 12 | - | 11 | 177 | | 08:30 | 08:45 | 5 | 76 | - | - | - | - | - | 63 | 3 | 12 | - | 9 | 168 | | 08:45 | 09:00 | 5 | 58 | - | - | - | - | - | 43 | 2 | 5 | - | 10 | 123 | | 09:00 | 09:15 | 1 | 46 | - | - | - | - | - | 50 | 8 | 9 | - | 2 | 116 | | 09:15 | 09:30 | 3 | 46 | - | - | - | - | - | 47 | 2 | 8 | - | 7 | 113 | | 09:30 | 09:45 | 5 | 23 | - | - | | 7= | - | 31 | 2 | 7 | 120 | 3 | 71 | | 09:45 | 10:00 | 6 | 33 | - | - | - | :- | - | 36 | 4 | 8 | - | 7 | 94 | | 10:00 | 10:15 | 7 | 35 | | - | - | | - | 30 | 5 | 11 | 1-1 | 2 | 90 | | 10:15 | 10:30 | 8 | 32 | | | - | - | - | 31 | 2 | 7 | - | 4 | 84 | | 10:30 | 10:45 | 6 | 32 | - | - | - | - | - | 27 | 9 | 10 | 1- | 7 | 91 | | 10:45 | 11:00 | 8 | 25 | | - | - | 1.5 | - | 27 | 5 | 13 | 15. | 9 | 87 | | 11:00 | 11:15 | 8 | 32 | - | - | + | - | - | 40 | 6 | 8 | - | 7 | 101 | | 11:15 | 11:30 | 8 | 26 | - | - | - | - | - | 27 | 7 | 11 | 1- | 4 | 83 | | 11:30 | 11:45 | 4 | 37 | 1.5 | - | - | - | - | 35 | 8 | 7 | 1.00 | 7 | 98 | | 11:45 | 12:00 | 5 | 33 | - | - | | - | - | 48 | 9 | 6 | - | 11 | 112 | | 12:00 | 12:15 | 5 | 46 | - | | - | 1= | - | 40 | 15 | 6 | - | 4 | 116 | | 12:15 | 12:30 | 4 | 38 | - | - | - | - | - | 45 | 5 | 12 | - | 9 | 113 | | 12:30 | 12:45 | 4 | 40 | - | - | | - | - | 56 | 10 | 8 | - | 8 | 126 | | 12:45 | 13:00 | 3 | 33 | ~ | - | - | - | - | 50 | 15 | 5 | - | 3 | 109 | | 13:00 | 13:15 | 5 | 39 | - | | - | - | - | 36 | 7 | 9 | - | 3 | 99 | | 13:15 | 13:30 | 11 | 30 | - | - | - | - | - | 42
50 | 10
7 | 1 | - | 5 | 99 | | 13:30
13:45 | 13:45
14:00 | 6 | 31
44 | - | - | * | - | - | 79 | 6 | 12 | - | 3 | 117 | | 14:00 | 14:00 | 11 | 95 | - | - | - | - | - | 60 | 7 | 16 | - | 7 | 196 | | 14:00 | 14:15 | 8 | 63 | - | - | | - | - | 58 | 7 | 9 | - | 5 | 150 | | 14:30 | 14:45 | 6 | 36 | - | - | - | - | - | 51 | 7 | 10 | - | 6 | 116 | | 14:45 | 15:00 | 8 | 38 | - | - | - | - | - | 54 | 12 | 5 | - | 4 | 121 | | 15:00 | 15:15 | 4 | 51 | - | - | - | - | - | 63 | 13 | 6 | - | 3 | 140 | | 15:15 | 15:30 | 5 | 43 | - | - | | - | - | 60 | 9 | 5 | - | 6 | 128 | | 15:30 | 15:45 | 12 | 35 | - | - | - | | - | 57 | 3 | 8 | - | 5 | 120 | | 15:45 | 16:00 | 6 | 31 | - | - | | - | | 61 | 13 | 6 | - | 5 | 122 | | 16:00 | 16:15 | 10 | 37 | - | - | - | - | - | 78 | 8 | 1 | - | 7 | 141 | | 16:15 | 16:30 | 14 | 39 | - | | - | - | - | 84 | 6 | 5 | - | 4 | 152 | | 16:30 | 16:45 | 9 | 41 | - | - | - | - | - | 98 | 10 | 6 | - | 5 | 169 | | 16:45 | 17:00 | 10 | 33 | - | - | - | - | - | 61 | 9 | 6 | - | 9 | 128 | | 17:00 | 17:15 | 8 | 51 | - | - | ÷ | - | - | 77 | 10 | 3 | - | 3 | 152 | | 17:15 | 17:30 | 11 | 46 | - | - | - | - | - | 69 | 12 | 4 | - | 5 | 147 | | 17:30 | 17:45 | 10 | 33 | .= | - | - | 17 | - | 53 | 10 | 2 | 1- | 3 | 111 | | 17:45 | 18:00 | 9 | 28 | - | - | 8 | - | | 46 | 10 | 6 | - | 7 | 106 | | 18:00 | 18:15 | 9 | 19 | 1- | - | - | - | - | 34 | 6 | 2 | (=) | 5 | 75 | | 18:15 | 18:30 | 10 | 20 | - | - | | - | - | 32 | 5 | 5 | - | 7 | 79 | | 18:30 | 18:45 | 2 | 16 | - | | = | - | - | 16 | 10 | 1 | - | 1 | 46 | | 18:45 | 19:00 | 2 | 19 | - | - | - | 14 | - | 18 | 6 | 6 | - | 4 | 55 | | | TAL | 398 | 2 258 | -1 | | - | - | 10-0 | 2 760 | 399 | 421 | | 387 | 6 623 | # Western Service Road and Harrowdene Office Park Entrance Road (Intersection 6) Traffic counts Data | LOCATION: | | | VOODMEAU | | PROJECT TI | TLE: | | | WOODM | EAD-TRAFFI | C COUNT | | | | | |-------------------------|----------------|--------|----------------------------|-----|------------|----------|------|-----------------------|------------|------------|-----------|------------|-----|--------------|-------------| | PROJECT NI
SURVEY DA | | | JT2022-219
y, 03 Novemb | | INTERSECT | ON: | ١ | WESTERN SEI | RVICE ROAD | & ACCESS 1 | TO HUAWEI | OFFICE PAR | K | // UI | itraf | | SURVEY TIN | | | 5H00-19H0 | | KMZ FILE N | R: | P1 | DATA: | J.A.V | TYPE: | 4\ | V-14H-5-19 | -C | U | | | | | | | | | | TOTA | AL SUMMA | RY | | | | | | | | TIN | ΜE | NC | ORTHBOU | ND | V | VESTBOUN | | Account to the second | OUTHBOUN | ID | Е | ASTBOUN | D | VOLUN | //E SUMMARY | | START | END | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | TOTAL | | | 05:00 | 05:15 | - | 1 | - | - | - | - | - | 2 | - | - | - | - | 3 | | | 05:15
05:30 | 05:30
05:45 | - | 13 | - | - | - | - | - | 3
8 | 1 | - | - | - 2 | 5
24 | | | 05:45 | 06:00 | 2 | 12 | - | - | - | - | - | 14 | 2 | 2 | - | 1 | 33 | | | 06:00 | 06:15 | 2 | 12 | - | - | - | - | - | 13 | 11 | 2 | - | - | 40 | | | 06:15 | 06:30 | 2 | 14 | - | - | - | 1- | - | 22 | 6 | 5 | .=. | - | 49 | | | 06:30 | 06:45 | 3 | 24 | - | - | - | - | - | 43 | 12 | 3 | - | 1 | 86 | | | 06:45 | 07:00 | 4 | 39 | - | - | - | - | - | 63 | 12 | 5 | | 3 | 126 | | | 07:00 | 07:15 | 1 | 58 | - | - | - | - | - | 117 | 11 | 3 | - | 1 | 191 | | | 07:15
07:30 | 07:30
07:45 | 5
7 | 78
107 | - | - | - | - | - | 144
173 | 33 | 7 | - | 2 | 259
327 | | | 07:30 | 08:00 | 13 | 91 | - | - | - | - | - | 145 | 48 | 5 | | 6 | 308 | | | 08:00 | 08:15 | 28 | 52 | - | - | - | - | - | 114 | 51 | 6 | - | 2 | 253 | | | 08:15 | 08:30 | 43 | 64 | - | - | - | - | - | 101 | 82 | 18 | - | 6 | 314 | | | 08:30 | 08:45 | 8 | 67 | - | - | - | 1- | - | 126 | 63 | 12 | 1-1 | 1 | 277 | | | 08:45 | 09:00 | 4 | 54 | - | - | - | - | - | 106 | 27 | 12 | (=) | 1 | 204 | | | 09:00 | 09:15 | 1 | 42 | - | - | - | - | - | 98 | 11 | 7 | - | 2 | 161 | | | 09:15 | 09:30 | 3 | 36 | - | - | - | - | - | 56 | 6 | 12 | - | 2 | 115 | | | 09:30 | 09:45 | 1 | 47 | - | | - | - | - | 48 | 11 | 4 | - | 2 | 113 | | | 09:45
10:00 | 10:00
10:15 | 2 | 39
45 | - | | - | - | - | 55
48 | 20
8 | 8 | - | - 2 | 126
110 | | | 10:15 | 10:30 | 1 | 43 | - | - | | - | - | 40 | 6 | 4 | | 2 | 96 | | | 10:30 | 10:45 | - | 41 | - | - | - | | - | 46 | 7 | 10 | - | 1 | 105 | | | 10:45 | 11:00 | 2 | 48 | - | - | - | - | - | 42 | 6 | 9 | - | - | 107 | | | 11:00 | 11:15 | 3 | 50 | - | - | _ | - | - | 44 | 11 | 7 | - | 1 | 116 | | | 11:15 | 11:30 | 5 | 30 | - | - | - | - | - | 43 | 10 | 8 | - | 3 | 99 | | | 11:30 | 11:45 | 2 | 33 | - | - | - | 1.5 | - | 49 | 6 | 11 | - | 3 | 104 | | | 11:45 | 12:00 | 1 | 35 | - | - | | - | - | 44 | 8 | 17 | - | 2 | 107 | | | 12:00 | 12:15 | 2 | 47 | | - | - | | - | 38 | 7
18 | 41 | - | 7 | 141
149 | | | 12:15
12:30 | 12:30
12:45 | 2 | 49
58 | - | - | - | - | - | 49 | 21 | 35
14 | - | 3 | 149 | | | 12:45 | 13:00 | 3 | 44 | _ | - | _ | - | _ | 48 | 18 | 30 | - | 1 | 144 | | | 13:00 | 13:15 | 1 | 36 | - | - | - | - | - | 43 | 23 | 15 | - | 4 | 122 | | | 13:15 | 13:30 | 1 | 46 | - | - | - | - | - | 51 | 19 | 12 | - | 3 | 132 | | | 13:30 | 13:45 | 4 | 44 | - | - | - | - | - | 58 | 19 | 10 | - | 1 | 136 | | | 13:45 | 14:00 | 4 | 44 | - | - | - | - | - | 71 | 22 | 5 | - | 2 | 148 | | | 14:00 | 14:15 | 6 | 93 | - | - | - | - | - | 61 | 22 | 13 | - | 4 | 199 | | | 14:15 | 14:30 | 6 | 66 | - | - | - | - | - | 59 | 14 | 4 | - | 2 | 151 | | | 14:30
14:45 | 14:45
15:00 | 1 | 43
50 | - | | - | - | - | 52
57 | 5
11 | 5 | - | 2 |
110
125 | | | 15:00 | 15:15 | 2 | 81 | - | - | - | - | - | 60 | 4 | 11 | - | 1 | 159 | | | 15:15 | 15:30 | 1 | 54 | | -/ | - | - | - | 63 | 2 | 4 | - | 1 | 125 | | | 15:30 | 15:45 | - | 48 | - | - | - | - | - | 53 | 4 | 7 | - | 1 | 113 | | | 15:45 | 16:00 | 1 | 57 | - | - | Ē. | - | - | 56 | 13 | 8 | - | 3 | | | | 16:00 | 16:15 | 1 | 54 | - | - | | - | - | 62 | 6 | 28 | - | 8 | 159 | | | 16:15 | 16:30 | 2 | 62 | (=) | - | - | - | - | 54 | 7 | 16 | - | 7 | 148 | | | 16:30 | 16:45 | 1 | 57 | - | -0 | - | - | - | 72 | 10 | 30 | (=) | 16 | | | | 16:45
17:00 | 17:00
17:15 | 3 | 69
55 | - | - | - | - | - | 70 | 9 | 19
46 | - | 11 | 173
195 | | | 17:15 | 17:30 | 1 | 41 | - | - | - | - | - | 57 | 8 | 32 | - | 7 | 146 | | | 17:30 | 17:45 | 4 | 54 | - | - | - | - | - | 59 | 17 | 21 | - | 8 | 163 | | | 17:45 | 18:00 | 1 | 43 | - | - | - | - | - | 33 | 20 | 38 | - | 10 | 145 | | | 18:00 | 18:15 | 1 | 27 | - | | - | 1- | - | 38 | 2 | 11 | 1-3 | - | 79 | | | 18:15 | 18:30 | - | 21 | - | - | - | - | - | 24 | 1 | 2 | - | 1 | 49 | | | 18:30 | 18:45 | - | 18 | - | - | - | - | - | 20 | - | - | - | | 38 | | | 18:45 | 19:00 | - | 21 | - | -/ | - | - | - | 27 | - | - | - | - | 48 | | | TO | IAL | 194 | 2 559 | | | - | | | 3 244 | 806 | 656 | | 167 | 7 626 | | # Western Service Road and The Woodlands Office Park Entrance Road (Intersection 7) Traffic counts Data | 05:00 05:15 05:30 05:45 06:00 06:15 06:30 06:45 07:00 07:15 07:30 07:45 08:00 08:15 09:00 09:15 09:30 09:45 10:00 10:15 11:30 11:45 11:30 11:45 12:00 12:15 | E:
ES: | Thursday
05 | T2022-2197, 03 November 5H00-19H000 PRTHBOUN 2 3 7 10 5 15 22 26 27 63 78 106 80 80 85 71 77 52 54 58 33 52 52 60 | ar 2022
D
3
 | INTERSECTI KMZ FILE N V 4 | | D 6 | DATA: | J.A.V | TYPE: | E. 10 1 2 3 6 6 4 5 5 6 6 14 11 9 9 11 | ASTBOUNI 11 | | VOLUM
TOTAL
8
13
22
22
55
88
123
147
260
316
354
340
327 | itraf MESUMMARY 1 1 1 1 1 1 | |--|---|--|--|-----------------------|-----------------------------|------------|----------|-------------|---|---|--|-------------|--|--|-------------------------------| | SURVEY TIMES TIME START 05:00 05:05 05:30 05:45 06:00 06:15 06:30 06:45 07:00 07:15 07:30 07:45 08:00 08:15 08:30 08:45 09:00 09:15 10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45 12:00 12:15 | E END 05:15 05:30 05:45 06:00 06:15 06:30 06:45 07:00 07:15 08:00 08:15 08:30 08:45 09:00 09:15 09:30 09:45 10:00 10:15 10:30 10:45 | NO 1 | RTHBOUN 2 3 3 7 10 5 15 22 26 27 63 78 106 80 65 71 77 52 54 58 33 33 52 | 3 | | VESTBOUN 5 | TOTA D 6 | SC 7 | RY BUTHBOUN 8 5 6 11 15 29 46 56 87 151 175 185 180 163 116 | 9 - 1
1 1 7 16 29 23 34 46 63 39 44 54 52 | E. 10 1 2 3 6 6 4 5 5 6 6 14 11 9 9 11 | ASTBOUNT 11 | 12
 | VOLUM
TOTAL
8
13
22
22
55
88
123
147
260
316
354
340
327 | 1E SUMMARY | | TIME START 05:00 05:15 05:30 05:45 06:00 06:15 06:30 06:45 07:00 07:15 07:30 07:45 08:00 08:15 08:30 08:45 09:00 09:15 10:00 10:15 10:30 10:45 11:30 11:45 12:00 12:15 | E END 05:15 05:30 05:45 06:00 06:15 06:30 06:45 07:00 07:15 07:30 08:15 08:30 08:45 09:00 09:15 09:30 09:45 10:00 10:15 10:30 10:45 | NO 1 | PRTHBOUN 2 3 7 10 5 15 22 26 27 63 78 106 80 65 71 77 52 54 58 33 35 52 | 3
 | | VESTBOUN 5 | TOTA D 6 | SC 7 | RY BUTHBOUN 8 5 6 11 15 29 46 56 87 151 175 185 180 163 116 | 9 - 1
1 1 7 16 29 23 34 46 63 39 44 54 52 | E. 10 1 2 3 6 6 4 5 5 6 6 14 11 9 9 11 | ASTBOUNT 11 | 12
 | TOTAL 8 13 22 22 55 88 123 147 260 316 354 340 327 | 11 11 11 | | START 05:00 05:15 05:30 05:45 06:00 06:15 06:30 06:45 07:00 07:15 07:30 07:45 08:00 08:15 08:30 08:45 09:00 09:15 09:30 09:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45 12:00 12:15 | END 05:15 05:30 05:45 06:00 06:15 06:30 06:45 07:00 07:15 07:30 07:45 08:00 08:15 08:30 09:15 09:30 09:45 10:00 10:15 | 1
 | 2
3
7
10
5
15
22
26
27
63
78
106
80
65
71
77
52
54
58
33
52
52 | 3 | | 5 | D 6 | SC 7 | 8 5 6 11 15 29 46 56 87 151 175 187 185 180 163 116 | 9
 | 10
-
-
1
2
3
6
6
4
5
6
6
14
11
9 | 11 | 12
 | TOTAL 8 13 22 22 55 88 123 147 260 316 354 340 327 | 11 11 11 | | START 05:00 05:15 05:30 05:45 06:00 06:15 06:30 06:45 07:00 07:15 07:30 07:45 08:00 08:15 08:30 08:45 09:00 09:15 09:30 09:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45 12:00 12:15 | END 05:15 05:30 05:45 06:00 06:15 06:30 06:45 07:00 07:15 07:30 07:45 08:00 08:15 08:30 09:15 09:30 09:45 10:00 10:15 | 1
 | 2
3
7
10
5
15
22
26
27
63
78
106
80
65
71
77
52
54
58
33
52
52 | 3 | | 5 | 6 | 7 | 8
5
6
11
15
29
46
56
87
151
175
187
188
180
163 | 9
 | 10
-
-
1
2
3
6
6
4
5
6
6
14
11
9 | 11 | 12
 | TOTAL 8 13 22 22 55 88 123 147 260 316 354 340 327 | 11 11 11 | | 05:15 05:30 05:45 06:00 06:15 06:30 06:45 07:00 07:15 07:30 07:45 08:00 08:15 08:30 08:45 09:00 09:15 10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45 12:00 12:15 | 05:30
05:45
06:00
06:15
06:30
06:45
07:00
07:15
07:30
07:45
08:00
08:15
08:30
09:45
09:00
09:15
09:30
10:00
10:15
10:30
10:45 | 2 1 1 4 6 6 5 5 10 0 8 8 15 17 11 11 11 9 9 6 6 4 4 7 7 7 3 3 | 7
10
5
15
22
26
63
78
106
80
65
71
77
52
54
58
33 | | | | | | 6 11 15 29 46 56 87 151 175 187 185 180 163 116 | - 1
1 7
16 29 23 34 46 39 44 54 52 | -
-
1
2
3
6
4
5
6
14
11
9 | | -
-
-
2
-
2
1
1 | 13
22
22
55
88
123
147
260
316
354
340 | 1 1 1 1 | | 05:30
05:45
06:00
06:15
06:30
06:45
07:00
07:15
07:30
07:45
08:00
08:15
08:30
08:45
09:00
09:15
10:00
10:15
10:30
10:45
11:00
11:15
11:30
11:45
12:00
12:15 | 05:45
06:00
06:15
06:30
06:45
07:00
07:15
08:00
08:15
08:30
08:45
09:00
09:15
09:30
09:45
10:00
10:15
10:30 | 2
2 1 4 4 6 6 5 5 10 0 8 8 15 17 11 11 11 9 9 6 6 4 4 7 7 7 3 3 | 10
5
15
22
26
27
63
78
106
80
65
71
77
52
54
58
33 | | | | | | 11
15
29
46
56
87
151
175
187
185
180
163 | 1
1
7
16
29
23
34
46
39
44
54 | 1
2
3
6
4
5
6
14
11 | | -
-
-
2
-
2
1
-
-
5 | 22
22
55
88
123
147
260
316
354
340 | 1 1 1 1 | | 05:45 06:00 06:15 06:30 06:45 07:00 07:15 07:30 07:45 08:00 08:15 08:30 08:45 09:00 09:15 10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45 12:00 12:15 | 06:00
06:15
06:30
06:45
07:00
07:15
07:30
08:00
08:15
08:30
08:45
09:00
09:15
09:30
09:45
10:00
10:15
10:30 | 2
1
4
6
5
10
8
8
15
17
11
11
11
9
9
4
4
7
7 | 5
15
22
26
27
63
78
106
80
65
71
77
52
54
58
33
35
52 | | | | | | 15
29
46
56
87
151
175
187
185
180
163 | 1
7
16
29
23
34
46
39
44
54 | 1
2
3
6
4
5
6
14
11
9 | | -
-
2
-
2
1
-
5 | 22
55
88
123
147
260
316
354
340 | 1 1 1 1 | | 06:00 06:15 06:30 06:45 07:00 07:15 07:30 07:45 08:00 08:15 08:30 08:45 09:00 09:15 10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45 12:00 12:15 | 06:15
06:30
06:45
07:00
07:15
07:30
07:45
08:00
08:15
08:30
08:45
09:00
09:15
09:30
09:45
10:00
10:15
10:30 | 2 1 1 4 4 6 5 5 10 10 8 8 15 5 17 11 11 11 9 9 9 6 6 4 7 7 7 3 3 | 15
22
26
27
63
78
106
80
65
71
77
52
54
58
33
35
52 | | | | | | 29
46
56
87
151
175
187
185
180
163 | 7
16
29
23
34
46
39
44
54 | 2
3
6
4
5
6
14
11
9 | | -
2
-
2
1
-
5 | 55
88
123
147
260
316
354
340
327 | 1 1 1 1 | | 06:15 06:30 06:45 07:00 07:15 07:30 07:45 08:00 08:15 08:30 08:45 09:00 09:15 10:00 10:15 11:30 11:45 11:30 11:45 12:00 12:15 | 06:30
06:45
07:00
07:15
07:30
07:45
08:00
08:15
08:30
08:45
09:00
09:15
09:45
10:00
10:15
10:30 | 1
4
6
5
10
8
8
15
17
11
11
11
9
9
6
6
4
4
7
7 | 22
26
27
63
78
106
80
65
71
77
52
54
58
33 | | | - | | - | 46
56
87
151
175
187
185
180
163 | 16
29
23
34
46
39
44
54 | 3
6
4
5
6
14
11
9 | - | 2
-
2
1
-
5 | 88
123
147
260
316
354
340
327 | 1 1 1 1 | | 06:45 07:00 07:15 07:30 07:45 08:00 08:15 08:30 09:45
09:00 09:15 09:30 09:45 10:00 10:15 11:30 11:45 11:30 11:45 12:00 12:15 | 07:00
07:15
07:30
07:45
08:00
08:15
08:30
09:00
09:15
10:00
10:15
10:30
10:45 | 6 5 10 8 8 15 17 11 11 11 9 9 6 6 4 4 7 7 7 3 3 | 27
63
78
106
80
65
71
77
52
54
58
33
52 | | | | - | - | 87
151
175
187
185
180
163
116 | 23
34
46
39
44
54 | 4
5
6
14
11
9 | | -
2
1
-
5
2 | 147
260
316
354
340
327 | 1 1 1 | | 07:00 07:15 07:30 07:45 08:00 08:15 08:30 08:45 09:00 09:15 09:30 09:45 10:00 10:15 11:30 11:45 11:30 11:45 12:00 12:15 | 07:15
07:30
07:45
08:00
08:15
08:30
08:45
09:00
09:15
09:30
09:45
10:00
10:15
10:30 | 5 10 8 8 15 17 11 11 11 9 9 6 6 4 4 7 7 3 3 | 63
78
106
80
65
71
77
52
54
58
33
52 | | - | - | - | - | 151
175
187
185
180
163
116 | 34
46
39
44
54
52 | 5
6
14
11
9 | -
-
- | 2
1
-
5
2 | 260
316
354
340
327 | 1 1 1 1 | | 07:15 07:30 07:45 08:00 08:15 08:30 08:45 09:00 09:15 09:30 09:45 10:00 10:15 11:30 11:45 11:30 11:45 12:00 12:15 | 07:30
07:45
08:00
08:15
08:30
08:45
09:00
09:15
09:30
09:45
10:00
10:15
10:30
10:45 | 10
8
15
17
11
11
9
6
4
7 | 78
106
80
65
71
77
52
54
58
33
52 | - | - | - | - | | 175
187
185
180
163
116 | 46
39
44
54
52 | 6
14
11
9
11 | - | 1
-
5
2 | 316
354
340
327 | 1
1
1 | | 07:30 07:45 08:00 08:15 08:30 08:45 09:00 09:15 09:30 09:45 10:00 10:15 11:30 11:45 11:30 11:45 12:00 12:15 | 07:45
08:00
08:15
08:30
08:45
09:00
09:15
09:30
09:45
10:00
10:15
10:30
10:45 | 8 15 17 11 11 9 9 6 4 7 7 3 3 | 106
80
65
71
77
52
54
58
33
52 | - | - | - | - | - | 187
185
180
163
116 | 39
44
54
52 | 14
11
9
11 | • | -
5
2 | 354
340
327 | 1
1
1 | | 07:45 08:00 08:15 08:30 08:45 09:00 09:15 09:30 09:45 10:00 10:15 11:30 11:45 11:30 11:45 12:00 12:15 | 08:00
08:15
08:30
08:45
09:00
09:15
09:30
09:45
10:00
10:15
10:30
10:45 | 15
17
11
11
9
9
6
4
7 | 80
65
71
77
52
54
58
33
52 | - | - | | | - | 185
180
163
116 | 44
54
52 | 11
9
11 | - | 5 | 340
327 | 1 | | 08:00
08:15
08:30
08:45
09:00
09:15
09:30
09:45
10:00
10:15
10:30
10:45
11:00
11:15
11:30
11:45
12:00
12:15 | 08:15
08:30
08:45
09:00
09:15
09:30
09:45
10:00
10:15
10:30
10:45 | 17
11
11
9
9
6
4
7
7 | 65
71
77
52
54
58
33
52
52 | - | | | | -
-
- | 180
163
116 | 54
52 | 9 | - | 2 | 327 | 1 | | 08:15 08:30 08:45 09:00 09:15 09:30 09:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45 12:00 12:15 | 08:30
08:45
09:00
09:15
09:30
09:45
10:00
10:15
10:30
10:45 | 11
11
9
9
6
4
7
7 | 71
77
52
54
58
33
52
52 | - | | - | - | - | 163
116 | 52 | 11 | - | | | | | 08:45
09:00
09:15
09:30
09:45
10:00
10:15
10:30
10:45
11:00
11:15
11:30
11:45
12:00
12:15 | 09:00
09:15
09:30
09:45
10:00
10:15
10:30
10:45 | 9
9
6
4
7
7
3 | 52
54
58
33
52
52 | | - | - | - | - | 7000000 | 65 | | | | | 1 | | 09:00
09:15
09:30
09:45
10:00
10:15
10:30
10:45
11:00
11:15
11:30
11:45
12:00
12:15 | 09:15
09:30
09:45
10:00
10:15
10:30
10:45 | 9
6
4
7
7
3 | 54
58
33
52
52 | | 1- | - | - | | 80 | 00 | 17 | - | 6 | 292 | 1 | | 09:15
09:30
09:45
10:00
10:15
10:30
10:45
11:00
11:15
11:30
11:45
12:00
12:15 | 09:30
09:45
10:00
10:15
10:30
10:45 | 6
4
7
7
3 | 58
33
52
52 | 14 | | | | | | 43 | 9 | - | 3 | 196 | 1 | | 09:30
09:45
10:00
10:15
10:30
10:45
11:00
11:15
11:30
11:45
12:00
12:15 | 09:45
10:00
10:15
10:30
10:45 | 4
7
7
3 | 33
52
52 | - | | - | | | 84 | 37 | 8 | - | 2 | 194 | | | 09:45
10:00
10:15
10:30
10:45
11:00
11:15
11:30
11:45
12:00
12:15 | 10:00
10:15
10:30
10:45 | 7
7
3 | 52
52 | - | - | | - | - | 57
57 | 24 | 13
12 | - | 3 | 161
132 | | | 10:00
10:15
10:30
10:45
11:00
11:15
11:30
11:45
12:00
12:15 | 10:15
10:30
10:45 | 7 | 52 | | s= | - | - | - | 50 | 25 | 9 | - | 6 | | | | 10:30
10:45
11:00
11:15
11:30
11:45
12:00
12:15 | 10:45 | | 60 | - | - | - | - | - | 47 | 18 | 21 | - | 8 | | | | 10:45
11:00
11:15
11:30
11:45
12:00
12:15 | | 2 | | - 2 | 1- | - | - | - | 35 | 16 | 14 | - | 3 | 131 | | | 11:00
11:15
11:30
11:45
12:00
12:15 | 11:00 | | 46 | - | - | - | - | - | 54 | 18 | 16 | - | - | 136 | | | 11:15
11:30
11:45
12:00
12:15 | 1 2 2 2 2 2 2 | - | 42 | - | 1- | - | - | | 41 | 23 | 22 | - | 2 | | | | 11:30
11:45
12:00
12:15 | 11:15 | 4 | 44 | - | 0.5 | - | - | - | 50 | 14 | 13 | | 2 | 127 | | | 11:45
12:00
12:15 | 11:30
11:45 | 6 | 48
55 | | - | - | - | - | 49
53 | 14
13 | 13
17 | - | 3 | 131
142 | | | 12:15 | 12:00 | 1 | 67 | - | - | - | | - | 65 | 9 | 11 | - | 2 | 155 | | | | 12:15 | 3 | 95 | | - | - | - | - | 60 | 14 | 24 | - | 5 | 201 | | | | 12:30 | 3 | 90 | - | re- | - | - | - | 73 | 21 | 18 | - | - | 205 | | | | 12:45 | 3 | 71 | - | (- | - | - | | 70 | 18 | 29 | - | 6 | 197 | | | | 13:00 | 8 | 56 | - | | - | - | - | 82 | 18 | 17 | - | 3 | 184 | | | | 13:15
13:30 | 7 2 | 71
57 | | - | - | - | - | 68
63 | 20 | 20 | | - 4 | 186
171 | | | | 13:45 | 1 | 55 | | - | - | - | - | 80 | 14 | 12 | - | 1 | 163 | | | | 14:00 | - | 50 | - | - | - | - | - | 113 | 18 | 15 | - | 2 | 198 | | | | 14:15 | 4 | 110 | - | - | - | - | - | 78 | 19 | 17 | - | 3 | 231 | | | 14:15 | 14:30 | 1 | 83 | - | - | - | - | - | 85 | 17 | 21 | - | 6 | 213 | | | | 14:45 | 2 | 67 | - | - | - | - | - | 78 | 9 | 17 | - | 3 | 176 | | | | 15:00 | - | 51 | - | - | - | - | - | 66 | 18 | 16 | - | 3 | 154 | | | | 15:15
15:30 | 8 | 59
71 | - | 1= | - | - | - | 66 | 10
16 | 26 | - | 9 | 177
190 | | | | 15:45 | 20 | 40 | - | - | - | - | - | 56 | 10 | 22 | - | 5 | | | | | 16:00 | 2 | 69 | - | - | - | - | - | 69 | 10 | 39 | - | 7 | 196 | | | 16:00 | 16:15 | 4 | 80 | - | 1- | 1-1 | | | 78 | 5 | 27 | - | 13 | 207 | | | | 16:30 | 2 | 66 | - | 1- | - | - | - | 67 | 11 | 32 | - | 15 | 193 | | | | 16:45 | 4 | 90 | - | - | - | - | - | 70 | 8 | 22 | - | 9 | 203 | | | | 17:00 | 3 | 100 | 0- |) - | - | 1-1 | - | 58 | 6
7 | 15
30 | - | 11 | 178 | | | | 17:15
17:30 | 3 | 109
71 | 12 | - | - | - | - | 79
63 | 8 | 30 | - | 12 | 239
179 | | | | 17:45 | 4 | 63 | - | - | - | - | - | 60 | 2 | 22 | - | 5 | | | | | 18:00 | 1 | 72 | - | 1- | - | | - | 63 | 2 | 13 | - | - | 151 | | | 18:00 | 18:15 | - | 39 | Æ | - | - | | - | 40 | 5 | 6 | - | 2 | 92 | | | | ACCUPATION AND ADDRESS. | - | 33 | - | 12 | - | - | - | 37 | 1 | 10 | - | 1 | 82 | | | | 18:30 | - | 23
31 | - | S=. | - | - | - | 25 | - | 4 | - | - 2 | 52 | | | 18:45
TOTA | 18:30
18:45
19:00 | - | | - | 0.7 | - | - | - | 3 969 | - | 3 | - | 2 | 61 | | ## Woodlands Drive and Western Service Road (Intersection 8) Traffic counts Data | LOCATION: | | | VOODMEA | | PROJECT TIT | TLE: | | | WOODM | EAD-TRAFFI | C COUNT | | | | | |-----------------|----------------|----------|---------------------------|------------|-----------------|------------|----------|----------|---------|------------|-----------|-------------|----------|----------------|--------------| | PROJECT NI | | | T2022-219 | | INTERSECTION | ON: | | | WOODLA | NDS DR & J | ESSICA CL | | | Unitraf | f | | SURVEY DA | | | y, 03 Novemb
5H00-19H0 | | KMZ FILE NF | ₹- | P3 | DATA: | J.A.V | TYPE: | 414 | V-14H-5-19- | | (ornitial | | | JORVET TIK | ALS. | 0.5 | 51100-15110 | 0 | KIVIZ I ILL IVI | \. | F3 | DATA. | J.A.V | TIPE. | 40 | V-14H-3-19- | C | | | | | | | | | | | TOTA | AL SUMMA | RY | | | | | | | | TIM | | | RTHBOUN | | | ESTBOUN | | | UTHBOUN | | | ASTBOUND | | VOLUME SUMMARY | | | START | END
05:15 | 1 2 | 2 - | 3 4 | 4 5 | 5 20 | 6 | 7 | - 8 | 9 | 10 | 11 | 12 | TOTAL | | | 05:00
05:15 | 05:30 | 4 | - | 4 | 6 | 40 | 1 | - | - | - | - | 13 | 1 | 47
69 | | | 05:30 | 05:45 | 8 | - 8 | 10 | 25 | 52 | 1 | - | - | - | | 22 | 4 | 122 | | | 05:45 | 06:00 | 10 | 1 | 12 | 40 | 75 | 3 | 2 | - | 1 | 1 | 31 | 6 | 182 | 420 | | 06:00 | 06:15 | 10 | - | 13 | 43 | 78 | 2 | 1 | 1 | | - | 35 | 4 | 187 | 560 | | 06:15 | 06:30 | 6 | 1 | 14 | 86 | 117 | 4 | - | - | 1 | | 34 | 2 | 265 | 756 | | 06:30 | 06:45
07:00 | 16
12 | - 2 | 38
47 | 103
153 | 176 | 11 | - 1 | 1 | 1 | - 6 | 56
108 | 7
12 | 402 | 1036 | | 06:45
07:00 | 07:00 | 16 | 1 | 66 | 201 | 210
262 | 11 | 3 | 1 | 3 | 6 | 123 | 14 | 705 | 1418 | | 07:15 | 07:30 | 26 | 1 | 72 | 241 | 251 | 4 | 4 | - | 2 | 5 | 129 | 17 | 752 | 2423 | | 07:30 | 07:45 | 23 | 2 | 88 | 258 | 292 | 12 | 1 | - | 7 | 5 | 134 | 21 | 843 | 2864 | | 07:45 | 08:00 | 35 | 5 | 84 | 268 | 303 | 10 | 2 | 3 | 4 | 8 | 132 | 19 | 873 | 3173 | | 08:00 | 08:15 | 18 | 2 | 77 | 254 | 271 | 11 | 9 | 1 | 3 | 5 | 127 | 38 | 816 | 3284 | | 08:15 | 08:30 | 14 | 1 | 78 | 231 | 293 | 11 | 6 | 3 | 3 | 6 | 95 | 28 | 769 | 3301 | | 08:30 | 08:45 | 22 | 3 | 89 | 192 | 242 | 8 | 7 | 3 | 8 | 6 | 117 | 21 | 718 | 3176 | | 08:45
09:00 | 09:00
09:15 | 17
17 | 3 | 63
73 | 143
138 | 178
143 | 17
12 | 17
11 | - | 4 | 3
6 | 105
110 | 18
17 | 572
534 | 2875 | | 09:00 | 09:15 | 16 | 2
| 94 | 99 | 139 | 12 | 8 | 2 | 11 | 5 | 89 | 7 | 484 | | | 09:30 | 09:45 | 11 | - | 68 | 97 | 115 | 10 | 9 | 4 | 8 | 8 | 122 | 18 | 470 | | | 09:45 | 10:00 | 17 | 3 | 81 | 88 | 131 | 10 | 9 | 4 | 5 | 5 | 114 | 15 | 482 | 1970 | | 10:00 | 10:15 | 12 | 3 | 71 | 86 | 140 | 8 | 7 | 3 | 2 | 4 | 123 | 11 | 470 | 1906 | | 10:15 | 10:30 | 15 | 5 | 77 | 78 | 114 | 5 | 10 | 4 | 3 | 8 | 105 | 12 | 436 | 1858 | | 10:30 | 10:45 | 11 | 1 | 75 | 84 | 129 | 6 | 5 | 2 | 9 | 3 | 140 | 11 | 476 | 1864 | | 10:45
11:00 | 11:00
11:15 | 18 | 5
3 | 77
58 | 80
85 | 116
111 | 7 | 9 | 5 | 6 | 6
7 | 122 | 11 | 460 | 1842 | | 11:15 | 11:15 | 19 | 2 | 89 | 85 | 126 | 5 | 8 | 4 | 3 | 1 | 134 | 13 | 422
489 | 1794
1847 | | 11:30 | 11:45 | 19 | 1 | 83 | 83 | 110 | 9 | 4 | 2 | 5 | 5 | 119 | 12 | 452 | 1823 | | 11:45 | 12:00 | 16 | 4 | 82 | 86 | 126 | 7 | 8 | 5 | 4 | 1 | 107 | 18 | 464 | 1827 | | 12:00 | 12:15 | 25 | 1 | 126 | 98 | 134 | 8 | 4 | - | 5 | 3 | 144 | 10 | 558 | 1963 | | 12:15 | 12:30 | 25 | 4 | 126 | 107 | 145 | 16 | 8 | 3 | 6 | 5 | 131 | 22 | 598 | 2072 | | 12:30 | 12:45 | 25 | 1 | 106 | 102 | 116 | 6 | 9 | 2 | 8 | 4 | 167 | 12 | 558 | 2178 | | 12:45 | 13:00 | 15 | 3 | 88 | 114 | 132 | 8 | 6 | 5 | 3 | 7 | 120 | 19 | 520 | 2234 | | 13:00
13:15 | 13:15
13:30 | 14
19 | 2 | 105
92 | 112
99 | 124
160 | 5
7 | 7
6 | 3 | 2 | 7 4 | 127
143 | 14
19 | 524
556 | 2200 | | 13:30 | 13:45 | 26 | 5 | 87 | 122 | 136 | 4 | 8 | 2 | 6 | 6 | 123 | 11 | 536 | 2158 | | 13:45 | 14:00 | 23 | 5 | 79 | 141 | 164 | 2 | 11 | 4 | 10 | 6 | 134 | 15 | 594 | 2210 | | 14:00 | 14:15 | 17 | 1 | 159 | 106 | 113 | 3 | 9 | 4 | 4 | 4 | 132 | 20 | 572 | 2258 | | 14:15 | 14:30 | 11 | 1 | 126 | 110 | 127 | 6 | 4 | 4 | 3 | 7 | 159 | 23 | 581 | 2283 | | 14:30 | 14:45 | 11 | 1 | 105 | 97 | 144 | 1 | 6 | 3 | 1 | - | 205 | 11 | 585 | 2332 | | 14:45 | 15:00 | 14 | 2 | 104 | 99 | 128 | 5 | 6 | 3 | 2 | 8 | 155 | 17 | 543 | 2281 | | 15:00
15:15 | 15:15
15:30 | 22
17 | 2 | 136
113 | 93
88 | 116
119 | 6 | 5 | 2 | 6 | 3 | 253
207 | 18
20 | 662
589 | | | 15:30 | 15:45 | 20 | 1 | 110 | 85 | 123 | 2 | 6 | 2 | 6 | 5 | 260 | 19 | 639 | | | 15:45 | 16:00 | 17 | 4 | 129 | 83 | 128 | 3 | 5 | 5 | 4 | 6 | 248 | 14 | 646 | 2536 | | 16:00 | 16:15 | 13 | 3 | 108 | 82 | 142 | 1 | 10 | 2 | 4 | 6 | 278 | 16 | 665 | 2539 | | 16:15 | 16:30 | 18 | - | 130 | 74 | 140 | 5 | 10 | 2 | 2 | 2 | 341 | 18 | 742 | 2692 | | 16:30 | 16:45 | 11 | 1 | 163 | 78 | 139 | 1 | 8 | - | 2 | - | 263 | 27 | 693 | 2746 | | 16:45 | 17:00 | 23 | - | 134 | 71 | 139 | 5 | 3 | 1 | 3 | 1 | 253 | 14 | 647 | 2747 | | 17:00 | 17:15 | 19 | - | 143 | 92 | 180 | 1 | 2 | 2 | 2 | 2 | 290 | 16 | 749 | 2831 | | 17:15
17:30 | 17:30
17:45 | 22
13 | - | 157
119 | 73
75 | 150
140 | - 2 | 7 | - | - | - 1 | 262
182 | 18
10 | 696
546 | 2785 | | 17:45 | 18:00 | 12 | 1 | 105 | 63 | 146 | - | - | - | - | 1 | 193 | 18 | 539 | 2638
2530 | | 18:00 | 18:15 | 16 | - | 83 | 50 | 122 | 2 | 1 | - | - | - | 149 | 12 | 435 | 2216 | | 18:15 | 18:30 | 10 | 1 | 62 | 52 | 83 | - | 1 | 1 | - | - | 141 | 9 | 360 | 1880 | | 18:30 | 18:45 | 13 | - | 52 | 39 | 55 | 2 | 2 | - | - | - | 91 | 9 | 263 | 1597 | | 18:45 | 19:00 | 11 | - | 38 | 40 | 60 | 1 | 1 | 1 | - | - | 88 | 4 | 244 | 1302 | | TO [*] | TAL | 906 | 102 | 4 772 | 5 783 | 7 965 | 317 | 304 | 112 | 188 | 204 | 7 906 | 806 | 29 365 | | ## Woodlands Drive and Lincoln Street (Intersection 9) Traffic counts data | OCATION: | | | NOODMEA | | PROJECT TI | TLE: | | | WOODM | EAD-TRAFFI | C COUNT | | | | | |-----------------------|----------------|----------------|-----------------------------|----|---------------|------------|----------|----------|---------|--------------|----------|-------------|-----|------------|------------| | ROJECT N | | | JT2022-219 | | INTERSECTI | ION: | | | WOODLA | NDS DR & LII | NCOLN ST | | | III | hitraf | | URVEY DA
URVEY TIN | | | ay, 03 Novemb
15H00-19H0 | | KMZ FILE N | R. | P4 | DATA: | J.A.V | TYPE: | TA | I-14H-5-19- | C | | IILIGI | | OKVET TIN | VILJ. | 0 | 51100-15110 | O | KIVIZ FIEE IV | N. | 14 | DAIA. | J.A.V | TIPE: | 119 | 1-14П-5-19- | | | | | | | | | | | | TOTA | L SUMMA | RY | | | | | la de | | | 1IT | ME | NO | ORTHBOUN | ND | | VESTBOUND |) | SC | UTHBOUN | | E | ASTBOUNI |) | VOLUI | ME SUMMARY | | START | END | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | TOTAL | | | 05:00 | 05:15 | | - | | - | 14 | 7 | 6 | - | 3 | 3 | 10 | - | 43 | | | 05:15 | 05:30 | - | - | - | - | 25
46 | 13
13 | 12 | - | 1 | 7 2 | 9
16 | - | 63 | | | 05:30
05:45 | 05:45
06:00 | - | - | - | - | 75 | 16 | 15 | - | 4 | 1 | 21 | - | 132 | | | 06:00 | 06:15 | - | | - | - | 69 | 14 | 13 | - | 4 | 2 | 23 | - | 125 | | | 06:15 | 06:30 | - | - | - | - | 103 | 18 | 10 | - | 3 | 10 | 29 | - | 173 | | | 06:30 | 06:45 | - | - | - | - | 154 | 25 | 28 | - | 5 | 1 | 55 | - | 268 | | | 06:45 | 07:00 | 1- | - | | - | 198 | 31 | 40 | - | 15 | 12 | 86 | - | 382 | | | 07:00 | 07:15 | - | - | - | - | 240 | 39 | 33 | - | 11 | 13 | 114 | - | 450 | | | 07:15 | 07:30 | - | - | | - | 238 | 34 | 35 | - | 21 | 13 | 111 | - | 452 | | | 07:30 | 07:45 | .= | - | - | - | 264 | 41 | 42 | - | 19 | 7 | 128 | - | 501 | | | 07:45 | 08:00 | | - | - | - | 293 | 51 | 41 | - | 26 | 12 | 118 | - | 541 | | | 08:00 | 08:15 | .= | - | - | - | 255 | 34 | 52 | - | 19 | 9 | 121 | - | 490 | | | 08:15 | 08:30 | - | - | - | - | 278 | 23 | 52 | - | 35 | 13 | 79 | 7- | 480 | | | 08:30 | 08:45 | | - | - | 1-1 | 220 | 38 | 36 | - | 31 | 14 | 107 | - | 446 | | | 08:45 | 09:00 | - | - | - | - | 163 | 28 | 30 | - | 22 | 5 | 111 | - | 359 | | | 09:00 | 09:15 | - | - | - | - | 140 | 23 | 37 | | 12 | 7 | 120 | - | 339 | | | 09:15 | 09:30 | - | - | | | 150 | 30 | 17 | - | 14 | 11 | 97 | - | 319 | | | 09:30 | 09:45 | - | - | - | - | 103
122 | 28 | 35 | - | 12 | 12 | 101 | - | 291 | | | 09:45
10:00 | 10:00
10:15 | - | - | | - | 108 | 29
33 | 19
32 | - | 18
14 | 17
8 | 105 | | 315
300 | | | 10:15 | 10:30 | - | - | - | - | 111 | 24 | 32 | - | 13 | 10 | 103 | - | 292 | | | 10:30 | 10:45 | - | | _ | - | 117 | 30 | 28 | - | 11 | 10 | 111 | - | 307 | | | 10:45 | 11:00 | - | - | - | - | 115 | 27 | 32 | - | 11 | 12 | 107 | | 304 | | | 11:00 | 11:15 | - | _ | - | - | 105 | 31 | 31 | | 8 | 14 | 94 | - | 283 | | | 11:15 | 11:30 | - | _ | - | - | 103 | 40 | 42 | _ | 15 | 12 | 113 | _ | 325 | | | 11:30 | 11:45 | - | | - | - | 103 | 30 | 22 | - | 13 | 11 | 112 | - | 291 | | | 11:45 | 12:00 | - | - | - | - | 102 | 38 | 27 | - | 10 | 21 | 128 | - | 326 | | | 12:00 | 12:15 | | - | - | | 132 | 34 | 29 | - | 15 | 14 | 127 | - | 351 | | | 12:15 | 12:30 | - | - | - | - | 124 | 48 | 36 | - | 9 | 15 | 121 | - | 353 | | | 12:30 | 12:45 | | - | - | | 134 | 28 | 31 | - | 14 | 13 | 154 | | 374 | | | 12:45 | 13:00 | - | - | - | - | 119 | 28 | 35 | - | 15 | 7 | 143 | - | 347 | | | 13:00 | 13:15 |) - | - | | | 114 | 25 | 38 | - | 16 | 6 | 131 | | 330 | | | 13:15 | 13:30 | - | - | v | - | 142 | 29 | 26 | - | 11 | 8 | 131 | - | 347 | | | 13:30 | 13:45 | - | - | - | - | 128 | 34 | 24 | - | 8 | 10 | 140 | - | 344 | | | 13:45 | 14:00 | - | × | - | - | 156 | 43 | 33 | - | 15 | 10 | 117 | - | 374 | | | 14:00 | 14:15 | - | - | - | - | 112 | 23 | 36 | - | 21 | 5 | 136 | - | 333 | | | 14:15 | 14:30 | - | ÷ | - | - | 118 | 33 | 42 | - | 14 | 21 | 151 | 1- | 379 | | | 14:30 | 14:45 | - | - | - | - | 117 | 29 | 42 | - | 11 | 17 | 170 | 7.5 | 386 | | | 14:45 | 15:00 | - | | - | - | 123 | 34 | 26 | - | 9 | 19 | 148 | je. | 359 | | | 15:00 | 15:15 | - | - | - | - | 109 | 34 | 44 | - | 4 | 12 | 230 | - | 433 | | | 15:15
15:30 | 15:30 | - | - | | - | 101
117 | 26
31 | 43
27 | - | 5 | 9 | 180
256 | - | 364
453 | | | 15:45 | 15:45
16:00 | - | - | - | - | 117 | 32 | 37 | - | 12 | 17 | 233 | - | 453 | | | 16:00 | 16:15 | - | - | - | - | 127 | 33 | 49 | - | 15 | 17 | 293 | - | 534 | | | 16:15 | 16:30 | - | - | - | - | 124 | 35 | 40 | - | 8 | 19 | 255 | - | 481 | | | 16:30 | 16:45 | Œ. | 9 | - | - | 105 | 38 | 44 | - | 6 | 21 | 257 | - | 471 | | | 16:45 | 17:00 | 2- | - | - | - | 125 | 39 | 29 | - | 17 | 24 | 227 | - | 461 | | | 17:00 | 17:15 | 1- | - | - | - | 157 | 41 | 47 | - | 17 | 22 | 297 | 1- | 581 | | | 17:15 | 17:30 | - 4 | - | - | - | 140 | 38 | 41 | - | 16 | 26 | 231 | - | 492 | | | 17:30 | 17:45 | - | - | - | - | 119 | 35 | 20 | - | 12 | 26 | 174 | - | 386 | | | 17:45 | 18:00 | - | ¥ | - | - | 91 | 51 | 36 | - | 15 | 32 | 169 | - | 394 | | | 18:00 | 18:15 | - | - | - | - | 98 | 49 | 32 | - | 9 | 25 | 134 | - | 347 | | | 18:15 | 18:30 | 18 | - | - | - | 70 | 35 | 15 | - | 14 | 15 | 133 | | 282 | | | 18:30 | 18:45 | | - | - | - | 51 | 16 | 18 | - | 11 | 19 | 89 | - | 204 | | | 18:45 | 19:00 | - | - | - | - | 58 | 18 | 14 | - | 14 | 9 | 89 | - | 202 | | | TO | TAL | - | - | - | - | 7 244 | 1 727 | 1 741 | - | 708 | 722 | 7 3 5 4 | - | 19 496 | | # Woodlands Drive and The Woodlands Office Park Entrance Road/Country Club Estate (Intersection 10) Traffic counts data | LOCATION:
PROJECT N | | ^^ | /OODMEAD | | PROJECT TITL | .E: | | | WOODM | EAD-TRAFFI | C COUNT | | | | | |------------------------|----------------|----|-------------|----------|--------------|--------|----------|----------|------------|------------|-----------|------------|--------|------------------|------------| | SURVEY DA | | | , 03 Novemb | | INTERSECTIO | N: | | WOODL | ANDS DR & | ACCESS TO | THE WOODL | ANDS | | (unitraf | | | SURVEY TIM | MES: | 05 | Н00-19Н0 | 0 | KMZ FILE NR: | | P5 | DATA: | J.A.V | TYPE: | 4W | /-14H-5-19 | -C | 01 | | | | | | | | | | TOTAL | SUMMAR | ŧΥ | | | | | | | | TII | ME | NO | RTHBOU | ND | WE | STBOUN | D | so | UTHBOUN | ID | EA | STBOUNI | D | VOLUME SUMMARY | | | START | END | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | TOTAL | | | 05:00
05:15 | 05:15
05:30 | - | 12
15 | - 1 | - | - | 2 | 8
12 | 9 | - | - | - | - | 32
40 | | | 05:30 | 05:45 | 1 | 16 | 2 | 1 | - |
1 | 13 | 27 | 3 | - | - | - | 64 | | | 05:45 | 06:00 | 1 | 20 | 4 | 3 | - | 3 | 33 | 40 | 7 | - | - | - | 111 | 24 | | 06:00 | 06:15 | - | 23 | 3 | 3 | - | 1 | 33 | 33 | 8 | 2 | - | 1 | 107 | 32 | | 06:15 | 06:30 | 1 | 32 | 6 | 1 | - | 4 | 34 | 57 | 13 | 1 | - | 2 | 151 | 43. | | 06:30 | 06:45 | 5 | 48 | 2 | - | - | 6 | 44 | 88 | 24 | 3 | 72 | - | 220 | 58 | | 06:45 | 07:00 | 6 | 89 | 6 | 1 | - | 6 | 41 | 133 | 26 | 6 | - | 2 | | 79 | | 07:00 | 07:15 | 4 | 108 | 4 | 6 | - | 8 | 58 | 161 | 39 | 5 | - | 2 | | 108 | | 07:15
07:30 | 07:30
07:45 | 7 | 110 | 10
19 | 2 | - | 5
11 | 43
37 | 191
206 | 24
35 | 12 | - | - 1 | 404 | 133 | | 07:45 | 08:00 | 14 | 117 | 15 | 6 | | 9 | 58 | 210 | 42 | 7 | | - 6 | | 155 | | 08:00 | 08:15 | 15 | 102 | 15 | 2 | - | 14 | 54 | 176 | 44 | 9 | - | 3 | | 175 | | 08:15 | 08:30 | 16 | 79 | 9 | 1 | 1 | 2 | 67 | 188 | 59 | 11 | 1 | 2 | | 179 | | 08:30 | 08:45 | 15 | 94 | 12 | 1 | 3 | 14 | 46 | 151 | 59 | 11 | 1 | 3 | | 176 | | 08:45 | 09:00 | 18 | 104 | 7 | 5 | - | 9 | 24 | 122 | 40 | 10 | - | 2 | 341 | 162 | | 09:00 | 09:15 | 18 | 104 | 4 | 6 | 1 | 12 | 16 | 105 | 25 | 10 | - | 2 | 303 | | | 09:15 | 09:30 | 7 | 69 | 2 | 2 | - | 18 | 31 | 100 | 38 | 16 | - | 1 | | | | 09:30 | 09:45 | 8 | 101 | 3 | 4 | - | 10 | 21 | 71 | 21 | 11 | 3 | 1 | 254 | 3000 | | 09:45 | 10:00 | 6 | 100 | 4 | 2 | - | 14 | 21 | 98 | 18 | 12 | 1 | 4 | | 112 | | 10:00 | 10:15
10:30 | 5 | 101 | 3 | 3 | 1 | 10 | 10
11 | 99
100 | 13
15 | 10 | - 1 | 6 | | 107 | | 10:30 | 10:45 | 2 | 101 | 5 | 2 | | 10 | 15 | 90 | 13 | 10 | | 3 | | 103 | | 10:45 | 11:00 | 6 | 97 | 6 | 3 | 2 | 10 | 11 | 98 | 15 | 14 | 1 | 3 | | 102 | | 11:00 | 11:15 | 3 | 78 | 1 | 2 | - | 11 | 6 | 95 | 7 | 13 | - | 2 | | 98 | | 11:15 | 11:30 | 2 | 96 | 1 | 5 | u u | 13 | 12 | 97 | 11 | 15 | - | 2 | 254 | 98 | | 11:30 | 11:45 | 5 | 102 | 3 | 1 | - | 12 | 9 | 92 | 12 | 19 | - | 2 | 257 | 99 | | 11:45 | 12:00 | 4 | 93 | 2 | 6 | Ř | 33 | 15 | 86 | 12 | 17 | ja j | 4 | 272 | 100 | | 12:00 | 12:15 | 3 | 96 | 4 | 9 | 1 | 26 | 16 | 113 | 14 | 21 | 3 | 6 | | 109 | | 12:15 | 12:30 | 5 | 98 | 6 | 5 | - | 17 | 18 | 101 | 10 | 20 | - | 7 | | 112 | | 12:30 | 12:45 | 4 | 111 | 6 | 6 | | 27 | 14 | 120 | 9 | 27 | - | 7 | 331 | 120 | | 12:45
13:00 | 13:00
13:15 | 7 | 114
91 | 3 | 7 | | 20
17 | 18
14 | 105 | 14
15 | 20 | | 8
5 | | 124 | | 13:15 | 13:15 | 6 | 96 | 1 | 7 | | 27 | 16 | 118 | 19 | 16 | | 8 | | 121 | | 13:30 | 13:45 | 3 | 112 | 2 | 6 | - | 13 | 17 | 103 | 14 | 26 | | 6 | | 123 | | 13:45 | 14:00 | 5 | 105 | 6 | 6 | 2 | 7 | 20 | 127 | 25 | 17 | 12 | 3 | | 121 | | 14:00 | 14:15 | 3 | 108 | - | 8 | - | 12 | 14 | 96 | 16 | 20 | 2.5 | 1 | 278 | 121 | | 14:15 | 14:30 | 11 | 120 | 3 | 1 | 2 | 28 | 11 | 105 | 21 | 24 | | 3 | 329 | 123 | | 14:30 | 14:45 | 3 | 125 | 3 | 4 | 1 | 34 | 6 | 106 | 9 | 26 | - | 3 | | 124 | | 14:45 | 15:00 | 5 | 117 | 3 | 14 | - | 38 | 11 | 106 | 16 | 16 | - | 6 | | 125 | | 15:00 | 15:15 | 7 | 147 | 1 | 9 | 1 | 55 | 8 | 93 | 10 | 41 | - | 5 | | | | 15:15 | 15:30 | 5 | 132 | 1 | 6 | - | 43 | 10 | 90 | 7 | 20 | 1 | 11 | 326 | | | 15:30 | 15:45 | 1 | 191
165 | - 4 | 3 | 1 | 63
58 | 8 | 102
108 | 9
15 | 30 | 1 | 5
3 | | | | 15:45
16:00 | 16:00
16:15 | 2 | 186 | - 2 | 18 | - 1 | 75 | 12 | 108 | 4 | 54 | 1 | 10 | 393
487 | 150
161 | | 16:15 | 16:30 | 2 | 191 | 1 | 16 | | 46 | 5 | 124 | 3 | 25 | - | 10 | | 170 | | 16:30 | 16:45 | 1 | 181 | 2 | 8 | - | 51 | 7 | 102 | 5 | 51 | P. | 9 | | 172 | | 16:45 | 17:00 | 4 | 188 | 1 | 9 | - | 40 | 10 | 123 | 6 | 24 | 1 | 4 | | 173 | | 17:00 | 17:15 | 2 | 201 | 2 | 12 | - | 62 | 4 | 158 | 7 | 50 | - | 12 | 510 | 176 | | 17:15 | 17:30 | 3 | 197 | 5 | 7 | - | 27 | 8 | 132 | 8 | 30 | 14 | 8 | 425 | 176 | | 17:30 | 17:45 | 4 | 153 | 3 | 6 | - | 29 | 5 | 126 | 6 | 16 | - | 6 | | 169 | | 17:45 | 18:00 | 1 | 169 | 2 | 4 | 9 | 19 | 4 | 94 | 6 | 19 | | 6 | | 161 | | 18:00 | 18:15 | 1 | 117 | 2 | 5 | - | 21 | 6 | 97 | 4 | 14 | 7- | 3 | | 137 | | 18:15 | 18:30 | 1 | 114 | 2 | 6 | 1 | 13 | 3 | 76 | 3 | 16 | - | 5 | | 118 | | 18:30
18:45 | 18:45 | 1 | 94 | - | 7 | - | 10 | 1 | 58 | 3 | 10 | - | 1 | | 101 | | | 19:00 | - | 73 | | - | - | 13 | 1 | 68 | 1 | 4 | | - | 160 | 85 | # Woodlands Drive and The Woodlands Office Park Entrance Road/Pestle Street (Intersection 11) Traffic counts data | | | | /OODMEAD | | PROJECT TIT | LE: | | | WOODM | EAD-TRAFFIC | CCOUNT | | | | | |-------------------------|----------------|----------|-----------------------------|----------|-----------------|---------|------|----------|------------|-------------|----------|------------|--------|------------|------------| | PROJECT N | | | T2022-2197 | | INTERSECTIO | ON: | | | WOODLA | ANDS DR & P | ESTIE ST | | | III | nitraf | | SURVEY DA
SURVEY TIN | | | y, 03 November
5H00-19H0 | | KMZ FILE NR | | P10 | DATA: | J.A.V | TYPE: | 4) | N 14H F 10 | | | IILI GI | | ORVETTIN | VILJ. | 0.5 | 01100-13110 | 0 | KIVIZ I ILL IVI | | 110 | DAIA. | J.A.V | I TPE: | 41 | V-14H-5-19 | -0 | | | | | | | | 0 | | | TOTA | L SUMMAI | RY | | | | | | | | TIN | | - | RTHBOUN | | | ESTBOUN | | | UTHBOUN | | | ASTBOUNI | | | VE SUMMARY | | START | END | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | TOTAL | | | 05:00
05:15 | 05:15
05:30 | 3 | 10 | - | - | - | - | 1 | 13
18 | - 1 | 1 | - 14 | - | 23
33 | | | 05:30 | 05:45 | 7 | 17 | 1 | - | - | - | - | 15 | 3 | 1 | - | 2 | 46 | | | 05:45 | 06:00 | 4 | 39 | 1 | - | - | | - | 20 | 3 | 1 | - | 5 | 73 | | | 06:00 | 06:15 | 4 | 31 | 1 | - | - | - | 1 | 28 | 4 | 2 | - | - | 71 | | | 06:15 | 06:30 | 6 | 49 | 3 | 1 | - | - | 2 | 36 | 4 | 2 | 78 | 1 | 104 | | | 06:30 | 06:45 | 8 | 69 | 8 | 1 | - | - | 6 | 51 | 4 | 1 | 1 | 2 | 150 | | | 06:45 | 07:00 | 10 | 110 | 10 | - | - | - | 2 | 99 | 7 | 2 | - | 1 | 241 | | | 07:00 | 07:15 | 13 | 141 | 12 | - | - | 1 | 2 | 122 | 16 | 3 | - | - | 310 | | | 07:15 | 07:30 | 14 | 168 | 14 | - | - | - | 5 | 127 | 10 | 7 | 19 | 2 | 347 | | | 07:30
07:45 | 07:45
08:00 | 13
19 | 191
179 | 10
15 | 1 2 | - | 3 | 9 | 144 | 20 | 8 | 72 | 1 | 396
395 | | | 07:45 | 08:00 | 19 | 168 | 4 | 2 | - | 1 | 10 | 138 | 26 | 4 | - | 4 | 361 | | | 08:00 | 08:15 | 26 | 156 | 5 | 2 | - | 1 | 4 | 102 | 19 | 7 | - | 4 | 326 | | | 08:30 | 08:45 | 12 | 136 | 8 | 1 | - | 2 | 6 | 115 | 26 | 4 | - | 3 | 313 | | | 08:45 | 09:00 | 17 | 113 | 6 | - | - | | 1 | 128 | 22 | 5 | - | 4 | 296 | | | 09:00 | 09:15 | 14 | 100 | :- | 1 | - | 1 | 6 | 120 | 17 | 6 | 1- | - | 265 | | | 09:15 | 09:30 | 12 | 85 | 2 | - | - | - | 2 | 79 | 16 | 4 | - | 4 | 204 | | | 09:30 | 09:45 | 7 | 83 | 1 | 2 | - | - | 1 | 107 | 11 | 3 | - | 4 | 219 | | | 09:45 | 10:00 | 11 | 93 | 1 | - | - | - | 2 | 101 | 13 | 5 | | 3 | 229 | | | 10:00 | 10:15 | 8 | 99 | - | - | - | - | 2 | 103 | 7 | 3 | - | 5 | 227 | | | 10:15 | 10:30 | 7 | 103 | 2 | 1 | | - 1 | - 2 | 92
98 | 12
7 | 7 | - | 6
5 | 213
230 | | | 10:30
10:45 | 10:45
11:00 | 8 | 102
94 | 1 | 3 | - | - 3 | 1 | 102 | 5 | 5 | 1 | 5 | 230 | | | 11:00 | 11:15 | 3 | 96 | 1 | 1 | - | | - | 81 | 3 | 8 | - | 3 | 196 | | | 11:15 | 11:30 | 2 | 100 | 1 | 3 | - | 1 | - | 103 | 7 | 9 | | 3 | 229 | | | 11:30 | 11:45 | 2 | 88 | 1 | 2 | - | 1 | - | 94 | 4 | 2 | 1 | 4 | 199 | | | 11:45 | 12:00 | 5 | 97 | 1 | - | - | 1 | 3 | 98 | 7 | 3 | - | 3 | 218 | | | 12:00 | 12:15 | 7 | 116 | 2 | 3 | - | 3 | 1 | 105 | 4 | 12 | 12 | 4 | 257 | | | 12:15 | 12:30 | 2 | 105 | 3 | 2 | 1 | 1 | 2 | 97 | 3 | 8 | | 4 | 228 | | | 12:30 | 12:45 | 5 | 140 | 3 | 1 | - | 2 | 2 | 124 | 8 | 8 | 1 | 5 | 299 | | | 12:45 | 13:00 | 6 | 104 | - | 3 | - | 5 | 1 | 104 | 6 | 9 | | 7 | 245 | | | 13:00 | 13:15 | - | 108 | 2 | 2 | - | 1 | 1 | 95 | 4 | 7 | | 4 | 224
264 | | | 13:15
13:30 | 13:30
13:45 | 6 | 132
115 | 2 | 3 | . 1 | 3 | 2 | 95
108 | 8
6 | 9
7 | - | 5
7 | 256 | | | 13:45 | 14:00 | 5 | 125 | 2 | 1 | - | 3 | 2 | 109 | 7 | 5 | | 9 | 268 | | | 14:00 | 14:15 | 5 | 101 | - | 2 | _ | 2 | 1 | 93 | 6 | 7 | - | 11 | 228 | | | 14:15 | 14:30 | 2 | 110 | 3 | 5 | - | - | 1 | 123 | 5 | 12 | - | 9 | 270 | | | 14:30 | 14:45 | 3 | 106 | 2 | 4 | - | 5 | 1 | 114 | 9 | 5 | - | 10 | 259 | | | 14:45 | 15:00 | 5 | 122 | 1 | 6 | - | 2 | 1 | 112 | 2 | 4 | - | 12 | 267 | | | 15:00 | 15:15 | 3 | 99 | - | - | - | 3 | 1 | 131 | 8 | 11 | - | 15 | 271 | | | 15:15 | 15:30 | 1 | 108 | 1 | 4 | - | 2 | - | 121 | 5 | 13 | | 15 | 270 | | | 15:30 | 15:45 | 1 | 112 | 1 | 11 | - | 6 | 1 | 171 | 6 | 9 | 12 | 17 | 335 | | | 15:45 | 16:00 | 3 | 111 | 1 | | | 3 | 1 | 142 | 3
7 | 14 | | 23 | 307 | | | 16:00
16:15 | 16:15
16:30 | 2 | 153
138 | 1 | 11 | - | 3 | - 2 | 154
156 | 9 | 16
11 | - | 24 | 370
352 | | | 16:15 | 16:30 | 2 | 138 | - | 5 | - | 8 | - | 171 | 7 | 23 | 1- | 15 | 356 | | | 16:45 | 17:00 | 1 | 139 | | 10 | - | 5 | 1 | 162 | 4 | 15 | - | 23 | 360 | | | 17:00 | 17:15 | 2 | 179 | - | 8 | - | 8 | 1 | 174 | 4 | 20 | 1 | 23 | 420 | | | 17:15 | 17:30 | 3 | 144 | 1 | 4 | - | 2 | - | 180 | 2 | 21 | | 13 | 370 | | | 17:30 | 17:45 | 3 | 139 | - | 4 | - | 4 | 1 | 148 | 3 | 14 | | 8 | 324 | | | 17:45 | 18:00 | 2 | 107 | 2 | 2 | - | - | | 161 | 2 | 8 | 100 | 7 | 291 | | | 18:00 | 18:15 | 1 | 102 | - | 2 | - | 1 | - | 110 | 3 | 2 | | 11 | 232 | | | 18:15 | 18:30 | - | 88 | - | 3 | - | 1 | - | 100 | 1 | 5 | | 10 | 208 | | | 18:30 | 18:45
19:00 | 2 | 59 | - | - | - | - | - | 96 | - 1 | 4 | | 1 | 167
146 | | | 18:45 | | | 71 | | 1 | | - | | 66 | | 4 | 1 - | | | | ## Woodmead Drive & Woodlands Drive – (Intersection 12) Traffic counts data | OCATION: | | V | VOODMEAD | | | | | | WOODM | EAD-TRAFFI | C COUNT | | | | | |----------------|----------------|------------|--------------|------------|--------------------|------------|--------------|----------|---------------|--------------------|-------------|------------|------------|----------------|------------| | ROJECT N | | 1 | T2022-2197 | | INTERSECTION | ON: | | 1 | WOODLAND | S DR & WOO | DDMEAD DR | | | | itraf | | URVEY DA | | | y, 03 Novemb | | | _ | D4.5 | | | | |
* | _ | | וונוםו | | JRVEY TIN | VIES: | 0. | 5H00-19H0 | J | KMZ FILE NF | C. | P12 | DATA: | J.A.V | TYPE: | 4V | V-14H-5-19 | -C | | | | | | | | | | | TOTAL | SUMMA | RY | | | | | | | | TIT | ME | NC | RTHBOUN | ID | W | ESTBOUNE |) | SC | UTHBOUN | ID | E. | ASTBOUNI |) | VOLUN | IE SUMMARY | | START | END | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | TOTAL | | | 05:00 | 05:15 | 18 | 30 | 3 | 4 | - | - | - | 14 | 8 | 7 | - | 10 | | | | 05:15 | 05:30 | 32 | 48 | 5 | 2 | 2 | - 2 | - 2 | 25 | 12 | 5 | - 2 | 10 | 137 | | | 05:30
05:45 | 05:45
06:00 | 46
78 | 61
56 | 4 | 8 | 1 | 2 | 5 | 46
61 | 31
32 | 9 | 3 | 23
26 | 231
292 | | | 06:00 | 06:15 | 83 | 81 | 7 | 13 | - | - | 6 | 99 | 33 | 16 | - | 29 | 367 | | | 06:15 | 06:30 | 135 | 107 | 19 | 6 | - | 2 | 5 | 121 | 67 | 16 | 4 | 38 | 520 | | | 06:30 | 06:45 | 183 | 170 | 27 | 12 | 6 | 3 | 13 | 187 | 72 | 32 | 5 | 68 | 778 | | | 06:45 | 07:00 | 242 | 170 | 39 | 26 | 8 | 8 | 18 | 230 | 132 | 59 | 12 | 85 | 1 029 | | | 07:00 | 07:15 | 251 | 196 | 63 | 32 | 9 | 3 | 19 | 306 | 191 | 67 | 7 | 112 | 1 256 | | | 07:15 | 07:30 | 230 | 205 | 70 | 26 | 17 | 3 | 25 | 285 | 241 | 76 | 14 | 111 | 1 303 | | | 07:30 | 07:45 | 222 | 198 | 74 | 33 | 65 | 8 | 49 | 324 | 224 | 75 | 16 | 117 | 1 401 | | | 07:45
08:00 | 08:00
08:15 | 264
289 | 190
217 | 69
67 | 37
40 | 79
74 | 7 | 59
45 | 287
278 | 208
187 | 86
85 | 20
18 | 127
108 | 1 434 | | | 08:15 | 08:13 | 279 | 236 | 103 | 49 | 49 | 6 | 41 | 254 | 191 | 71 | 29 | 84 | 1 392 | | | 08:30 | 08:45 | 231 | 203 | 108 | 58 | 26 | 5 | 48 | 235 | 185 | 79 | 31 | 95 | 1 304 | | | 08:45 | 09:00 | 174 | 217 | 112 | 51 | 33 | 7 | 28 | 188 | 121 | 67 | 38 | 90 | 1 126 | | | 09:00 | 09:15 | 160 | 166 | 121 | 50 | 22 | 10 | 35 | 166 | 114 | 54 | 52 | 98 | 1 048 | | | 09:15 | 09:30 | 158 | 165 | 118 | 74 | 28 | 15 | 36 | 189 | 82 | 60 | 49 | 86 | 1 060 | | | 09:30 | 09:45 | 113 | 180 | 133 | 108 | 44 | 18 | 39 | 166 | 76 | 59 | 48 | 86 | 1 070 | | | 09:45 | 10:00 | 122 | 202 | 138 | 100 | 37 | 22 | 32 | 164 | 81 | 65 | 49 | 85 | 1 097 | | | 10:00 | 10:15 | 114 | 176 | 124 | 114 | 35 | 23 | 39 | 159 | 74 | 74 | 46 | 93 | 1 071 | | | 10:15 | 10:30
10:45 | 100 | 193
193 | 135
145 | 122
118 | 37
26 | 27 | 53
35 | 212
164 | 69
86 | 71
85 | 48 | 76
70 | 1 143 | | | 10:30 | 11:00 | 111 | 180 | 143 | 101 | 40 | 27 | 40 | 196 | 58 | 67 | 47 | 95 | 1 092
1 107 | | | 11:00 | 11:15 | 92 | 173 | 142 | 114 | 45 | 27 | 41 | 163 | 67 | 71 | 37 | 70 | 1 042 | | | 11:15 | 11:30 | 90 | 192 | 142 | 147 | 38 | 23 | 38 | 164 | 79 | 78 | 55 | 105 | 1 151 | | | 11:30 | 11:45 | 84 | 201 | 136 | 123 | 43 | 27 | 57 | 194 | 69 | 63 | 49 | 89 | 1 135 | | | 11:45 | 12:00 | 97 | 179 | 139 | 143 | 43 | 41 | 47 | 175 | 85 | 77 | 53 | 99 | 1 178 | | | 12:00 | 12:15 | 113 | 188 | 166 | 147 | 46 | 32 | 36 | 181 | 90 | 99 | 57 | 123 | 1 278 | | | 12:15 | 12:30 | 114 | 195 | 183 | 143 | 52 | 26 | 55 | 196 | 91 | 92 | 64 | 107 | 1 318 | | | 12:30 | 12:45 | 87 | 199 | 172 | 184 | 57 | 31 | 58 | 170 | 92 | 108 | 59 | 109 | 1 326 | | | 12:45 | 13:00 | 106 | 199 | 169 | 197 | 57 | 27 | 66 | 192 | 94 | 88 | 53 | 103 | 1 351 | | | 13:00 | 13:15
13:30 | 104 | 178
187 | 178
175 | 175
159 | 47
57 | 34 | 45
45 | 190
172 | 96
93 | 94 | 55
58 | 108
105 | 1 304 | | | 13:15
13:30 | 13:30 | 101 | 170 | 139 | 177 | 52 | 39
43 | 39 | 212 | 106 | 86
85 | 47 | 103 | 1 2 8 6 | | | 13:45 | 14:00 | 124 | 188 | 171 | 176 | 70 | 38 | 31 | 185 | 116 | 60 | 49 | 109 | 1 317 | | | 14:00 | 14:15 | 90 | 183 | 140 | 172 | 38 | 24 | 48 | 194 | 97 | 124 | 53 | 134 | 1 297 | | | 14:15 | 14:30 | 117 | 203 | 141 | 171 | 44 | 30 | 32 | 189 | 87 | 100 | 50 | 138 | 1 302 | | | 14:30 | 14:45 | 104 | 194 | 136 | 170 | 53 | 25 | 38 | 202 | 74 | 105 | 50 | 144 | 1 295 | | | 14:45 | 15:00 | 109 | 204 | 186 | 148 | 44 | 33 | 43 | 227 | 94 | 77 | 48 | 146 | 1 359 | | | 15:00 | 15:15 | 90 | 178 | 155 | 164 | 38 | 32 | 31 | 203 | 91 | 101 | 59 | 243 | 1 385 | | | 15:15 | 15:30 | 99 | 234 | 165 | 190 | 43 | 20 | 32 | 227 | 58 | 109 | 40 | 155 | 1 372 | | | 15:30 | 15:45 | 87 | 196 | 136 | 160 | 41 | 23 | 31 | 211 | 74 | 109 | 60 | 222 | 1 350 | | | 15:45
16:00 | 16:00
16:15 | 92 | 246
237 | 156
160 | 179
160 | 55
51 | 24 | 27
51 | 258
247 | 70
85 | 103
111 | 51
62 | 204
244 | 1 465
1 524 | | | 16:15 | 16:15 | 89 | 226 | 154 | 151 | 42 | 25 | 65 | 280 | 88 | 148 | 56 | 275 | 1524 | | | 16:30 | 16:45 | 93 | 241 | 149 | 150 | 34 | 29 | 44 | 299 | 78 | 142 | 60 | 228 | 1547 | | | 16:45 | 17:00 | 94 | 241 | 152 | 155 | 35 | 19 | 50 | 289 | 89 | 123 | 68 | 213 | 1 528 | | | 17:00 | 17:15 | 119 | 224 | 163 | 205 | 48 | 35 | 48 | 246 | 104 | 149 | 60 | 251 | 1 652 | | | 17:15 | 17:30 | 106 | 219 | 136 | 187 | 47 | 17 | 33 | 269 | 75 | 152 | 64 | 224 | 1 529 | | | 17:30 | 17:45 | 87 | 250 | 112 | 151 | 33 | 18 | 38 | 230 | 93 | 120 | 46 | 153 | 1 331 | | | 17:45 | 18:00 | 89 | 207 | 61 | 145 | 34 | 20 | 17 | 174 | 78 | 137 | 20 | 144 | 1 126 | | | 18:00 | 18:15 | 95 | 160 | 53 | 141 | 26 | 17 | 22 | 183 | 60 | 93 | 21 | 125 | 996 | | | 18:15 | 18:30 | 66 | 155 | 27 | 120 | 21 | 18 | 12 | 183 | 53 | 73 | 18 | 106 | 852 | | | 18:30 | 18:45 | 57
56 | 127
104 | 19 | 71 | 10 | 12 | 11 | 152 | 34 | 57 | 11
5 | 90
82 | 651
542 | | | 18:45 | 19:00
TAL | 6 785 | 10 118 | 6 169 | 49
6 111 | 9
1 992 | 1 065 | 1 911 | 116
10 929 | 33
5 168 | 50
4 485 | 2 121 | 6 578 | | | ## Marlboro Drive (M60) Westbound Shell Filling Station (Access A1) | LOCATION | | | WOODMEAD | | PROJECT TI | TLE: | | | WOODM | EAD-TRAFFI | C COUNT | | | | | |-------------------------|----------------|----|----------------|-----|------------|------|----------|-----------|----------|------------|-------------|--------------|------|-----------|-------| | PROJECT N | | | JT2022-2197 | | INTERSECTI | ION: | MA | RLBORO DR | & WESTBO | UNT SHELL | FILLING STA | TION ACCES | SS 1 | unit | raf | | SURVEY DA
SURVEY TIN | | | ay, 03 Novembe | | KMZ FILE N | R: | ACCESS 1 | DATA: | D.L | TYPE: | 414 | V-24H-00-00 | | al orne | | | | | | | - | | | 71002002 | | D.L | 111.5 | -4.0 | V-2411-00-00 | 0-0 | | | | 1 | | | | | | | TOTA | L SUMMA | RY | | | | | | | | TIN | ME | | IN | | | | | | OUT | | | | | VOLUME SU | MMARY | | START | END | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | TOTAL | | | 00:00 | 00:15 | - | 6 | - | - | - | - | - | 6 | - | - | - | - | 12 | | | 00:15 | 00:30 | | 3 | - | - | - | - | - | 8 | - | | - | - | 11 | | | 00:30 | 00:45
01:00 | - | 1 4 | - | - | - | - | - | 3 | - | - | - | - | 8 | | | 01:00 | 01:15 | - | - | | - | - | - | - | 2 | - | - | - | - | 2 | | | 01:15 | 01:30 | - | - | - | - | - | - | - | - | - | - | - | - | - | | | 01:30 | 01:45 | - | - | 19 | - | - | - | - | - | - | | - | - | - | | | 01:45 | 02:00 | - | 1 | 15 | .=: | - | - | - | 2 | - | - | | - | 3 | | | 02:00 | 02:15 | - | - | | | - | - | - | - | - | - | - | - | - | | | 02:15 | 02:30 | - | - | | - | - | - | - | - | - | - 4 | - | - | - | | | 02:30 | 02:45 | - | 2 | 15 | - | - | - | 1.5 | 3 | | - | | - | 5 | | | 02:45 | 03:00 | - | 1 | - | - | - | - | - | 2 | - | - | - | - | 3 | | | 03:00 | 03:15 | - | - | - | - | - | - | - | - | - | 2 | - | - | <u> </u> | | | 03:15 | 03:30
03:45 | - | 1 | - | - | | - | - | - | - | - | | - | 1 | | | 03:30 | 04:00 | | - | | - | - | - | - | 7 | - | - | - | - | 7 | | | 04:00 | 04:00 | - | - | - | - | - | - | - | - ' | - | - | - | - | - | | | 04:15 | 04:30 | - | 2 | - | - | - | - | - | 3 | - | - | - | - | 5 | | | 04:30 | 04:45 | - | 1 | - | - | - | - | - | 4 | - | | - | - | 5 | | | 04:45 | 05:00 | | 5 | | - | - | - | - | 6 | 100 | | - | - | 11 | | | 05:00 | 05:15 | - | 5 | - | - | 7- | .=: | - | 12 | - | - | - | - | 17 | | | 05:15 | 05:30 | - | 4 | ~ | - | - | - | - | 11 | - | - | - | - | 15 | | | 05:30 | 05:45 | - | 6 | | - | - | - | - | 14 | - | - | - | - | 20 | | | 05:45 | 06:00 | - | 13 | (= | - | 1+ | - | - | 11 | - | - | - | - | 24 | | | 06:00
06:15 | 06:15
06:30 | | 14 | - | - | - | - | - | 21
16 | - | - | - | - | 27
30 | | | 06:30 | 06:45 | - | 6 | | - | - | - | - | 4 | - | - | - | - | 10 | | | 06:45 | 07:00 | - | 6 | | - | - | | - | 9 | - | - | _ | - | 15 | | | 07:00 | 07:15 | | 11 | - | - | - | - | - | 9 | - | | - | | 20 | | | 07:15 | 07:30 | - | 15 | | - | - | - | - | 14 | - | - | - | - | 29 | | | 07:30 | 07:45 | - | 11 | - | - | - | - | - | 9 | - | - | - | - | 20 | | | 07:45 | 08:00 | - | 16 | - 1 | - | - | - | - | 11 | - | - | - | - | 27 | | | 08:00 | 08:15 | - | 14 | - | - | - | - | - | 13 | - | - | - | - | 27 | 1 | | 08:15 | 08:30 | - | 8 | - | - | - | - | - | 12 | - | - | - | - | 20 | | | 08:30 | 08:45 | - | 7 | | | - | - | | 7 | - | - | | - | 14 | | | 08:45
09:00 | 09:00
09:15 | - | 10 | - : | - | - | - | - | 14
11 | - | - | - | - | 24 | | | 09:15 | 09:30 | - | 7 | | - | | - | - | 12 | - | - | - | - | 19 | | | 09:30 | 09:45 | - | 15 | | - | - | - | - | 14 | - | - | - | - | 29 | | | 09:45 | 10:00 | - | 14 | - | - | - | - | - | 15 | - | | - | - | 29 | | | 10:00 | 10:15 | - | 12 | - | - | - | - | - | 15 | - | - | | - | 27 | 1 | | 10:15 | 10:30 | - | 11 | 7-2 | - | - | - | - | 11 | - | - | - | - | 22 | 1 | | 10:30 | 10:45 | - | 10 | - | - | 1- | - | - | 27 | - | - | - | - | 37 | 1 | | 10:45 | 11:00 | - | 20 | - | - | - | - | | 23 | - | - | - | - | 43 | 1 | | 11:00 | 11:15 | - | 12 | - | - | - | - | - | 13 | - | - | - | - | 25 | 1 | | 11:15
11:30 | 11:30
11:45 | - | 14 | - | - | - | - | - | 17
15 | - | - | - | - | 31 | 1 | | 11:30 | 11:45 | - | 13 | - | - | - | - | - | 11 | - | - | - | - | 28 | 1 | | 12:00 | 12:00 | - | 14 | - | - | - | - | - | 13 | - | - | - | - | 27 | 1 | | 12:15 | 12:30 | - | 17 | | - | - | - | - | 18 | | - | - | - | 35 | 1 | | 12:30 | 12:45 | - | 11 | - | - | - | - | - | 19 | - | - | - | - | 30 | 1 | | 12:45 | 13:00 | - | 21 | - | - | - | - | - | 16 | - | - | - | -
| 37 | 1 | | 13:00 | 13:15 | Ę. | 17 | = | - | | - | - | 17 | - | | - | - | 34 | 1 | | 13:15 | 13:30 | - | 16 | - | - | - | - | - | 15 | - | - | - | - | 31 | 1 | | 13:30 | 13:45 | - | 14 | - | - | - | - | - | 13 | - | - | - | - | 27 | 1 | | 13:45 | 14:00 | - | 4 | - | - | - | - | - | 5 | - | - | | - | 9 | 1 | | 14:00 | 14:15 | - | 15 | | (-) | - | - | - | 19 | - | - | - | - | 34 | 1 | | 14:15 | 14:30 | - | 14 | - | - | - | | - | 14 | - | - | - | - | 28 | | | 14:30 | 14:45 | - | 20 | - | - | - | - | - | 15 | | - | 1.50 | - | 35 | 1 | | 14:45 | 15:00 | - | 16 | - | - | - | - | - | 17 | - | - | - | - | 33 | 1 | | PROJECT NE
SURVEY DAT
SURVEY TIM
TIM
START | TE:
1ES: | Thursda | T2022-219
y, 03 Novem
0H00-00H0 | | INTERSECT | ION: | | | | | | | | | | |--|----------------|---------|---------------------------------------|----------|------------|------|----------|------------|-----------|------------|--------------|-----------|------|----------------|----------| | SURVEY TIM | IES: | | | ber 2022 | | | MA | RIBORODE | & WESTBO | INTSHELL | FILLING STA | TION ACCE | 55.1 | //LIDItest | | | TIM | | 0 | OHOO-OOHO | | | | | | G 1125150 | oner onecc | TIEE THE OIL | on Acce | | unitraf | | | | ΛΕ I | | 01100-00110 | 0 | KMZ FILE N | IR: | ACCESS 1 | DATA: | D.L | TYPE: | 4W | -24H-00-0 | | 7' | | | | ΛE. | | | | | | TOTA | AL SUMMA | ny | | | | | | | | | | | IN | | | | IUIA | AL SUIVINA | OUT | | | | | VOLUME SUMMARY | | | | END | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | | | 15:00 | 15:15 | _ | 10 | - | | | - | | 14 | - | - 10 | | - 12 | TOTAL | | | 15:15 | 15:30 | - | 15 | | - | - | _ | | 15 | | - | | | 30 | | | 15:30 | 15:45 | | 12 | | - | _ | - | | 15 | | - | | | 27 | | | 15:45 | 16:00 | | 7 | | - | | | | 9 | | | | _ | 16 | | | 16:00 | 16:00 | - | 16 | • | | - 1 | - | | 18 | - | | | - | | 97 | | 16:00 | 16:15 | - | 17 | - | - | - | - | | 23 | - | - | - | - | 34
40 | 107 | | 16:15 | 16:45 | | 16 | | | | | | 15 | | | | | | 117 | | _ | _ | - | 14 | - | - | - | - | | 20 | • | - | - | • | 31 | 121 | | 16:45
17:00 | 17:00
17:15 | - | 14 | - | - | - | - | | 20 | - | | - | - | 34 | 139 | | 17:15 | 17:15 | - | 14 | - | - | - | - | | 16 | - | | - | • | 34 | 139 | | 2007 | | - | 19 | - | - | - | - | | 18 | - | - | - | - | 30
37 | 129 | | 17:30 | 17:45 | • | | - | - | - | - | | | - | - | - | - | | 135 | | 17:45 | 18:00 | | 19 | - | - | - | - | | 27 | - | - | - | - | 46 | 147 | | 18:00 | 18:15 | • | 14 | - | - | • | - | | 13 | | • | - | | 27 | | | 18:15 | 18:30 | - | 8 | - | | • | - | | 19 | - | • | - | | 27 | | | 18:45 | 19:00 | - | 10 | - | | | - | | 11 | - | | | | 20 | | | 19:00 | 19:00 | | 9 | - | - | - | - | | 10 | - | - | - | | 19 | 95 | | 19:15 | 19:15 | - | 14 | - | - | - | - | | 15 | - | | | - | 29 | 87 | | 19:30 | 19:45 | - | 10 | - | - | - | - | | 12 | - | - | - | - | 22 | 89 | | 19:45 | 20:00 | | 14 | - | - | - | - | | 18 | - | | - | - | 32 | 91 | | 20:00 | 20:00 | - | 6 | - | - | - | - | | 10 | - | | - | - | 16 | 102 | | 20:00 | 20:15 | | 3 | - | - | - | - | | 2 | - | | - | - | 5 | 99 | | 20:30 | 20:30 | - | 11 | - | - | - | - | | 11 | - | | | - | 22 | 75 | | 20:30 | 21:00 | | 7 | - | - | - | - | | 5 | | | | - | 12 | 75 | | 21:00 | 21:00 | - | 3 | - | - | - | - | | 10 | - | - | | - | 13 | 55 | | 21:15 | 21:15 | - | 3 | - | - | - | - | • | 2 | | - | - | - | 5 | 52 | | 21:15 | 21:45 | - | 4 | - | - | - | - | | 4 | - | | - | - | 8 | 52 | | 21:45 | 22:00 | - | 1 | - | - | - | - | | 3 | - | - | - | - | 4 | 38 | | 22:00 | 22:15 | - | 6 | - | - | - | - | | 4 | | - | - | - | 10 | 30 | | 22:15 | 22:30 | - | 4 | - | - | | - | | 6 | | - | | - | 10 | 27
32 | | 22:30 | 22:45 | - | 3 | - | - | - | - | | 5 | - | - | - | - | 8 | | | 22:45 | 23:00 | - | 2 | - | - | - | - | | 1 | - | - | | - | 3 | 32 | | 23:00 | 23:15 | - | 4 | - | - | - | - | | 1 | - | - | | - | 5 | 31 | | 23:15 | 23:30 | - | - 4 | - | - | - | - | | 3 | - | | - | - | 3 | 26 | | 23:30 | 23:45 | - | 2 | - | - | - | - | | 2 | | - 1 | | - | 4 | 19 | | 23:45 | 00:00 | - | 1 | - | - | - | - | | 1 | | | | - | 2 | 15 | | 70T | | - | 828 | - | - | - | - | | 991 | - | | - | | 1 819 | 14 | ## Marlboro Drive (M60) Eastbound Shell Filling Station (Access A2) | LOCATION | | WOODMEAD
UT2022-2197 | | | PROJECT TI | TLE: | | | WOODM | EAD-TRAFFI | C COUNT | | | | | | |----------------|----------------|-------------------------|----------------|------|---------------|------|----------|-------------|-----------|------------|-------------|------------|-----|----------------|----|--| | PROJECT NI | | | | | INTERSECTI | ON: | AC | CESS 2 EAST | BOUND SHE | LL FILLING | STATION & I | MARLBORO | DR | unit | af | | | SURVEY DA | | | ay, 03 Novembe | | KMZ FILE N | D+ | ACCESS 2 | DATA: | DI | TVDE. | 414 | V 24H 00 0 | 0.0 | (Orner | aı | | | SURVET TIK | VILS. | 0 | ionoo-oonoc | , | KIVIZ FILE IV | n. | ACCESS 2 | DATA. | D.L | TYPE: | 40 | V-24H-00-0 | U-C | | | | | 1 | | | | | | | TOTA | AL SUMMA | RY | | | | | | | | | TIN | ME | IN | | | | | | | OUT | | | | | VOLUME SUMMARY | | | | START | END | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | TOTAL | | | | 00:00
00:15 | 00:15 | | 3 | - | - | - | - | - | - 2 | - | | | - | 2 | | | | 00:15 | 00:30
00:45 | - | 1 | | - | - | - | - | 3 | - | - | - | - | 5 | | | | 00:45 | 01:00 | - | 4 | | - | - | - | - | 2 | - | | - | - | 6 | | | | 01:00 | 01:15 | - | - | - | - | - | - | - | - | - | | - | | | | | | 01:15 | 01:30 | | 1 | - | - | - | - | - | - | - | - | - | - | 1 | | | | 01:30 | 01:45 | - | 1 | - | - | - | - | - | - | - | - | - | - | 1 | | | | 01:45 | 02:00 | - | 2 | - | - | - | - | | 2 | - | - | | - | 4 | | | | 02:00 | 02:15 | - | 1 | - | | - | - | - | 1 | - | - | - | - | 2 | | | | 02:15 | 02:30 | - | 2 | - | - | | - | - | 2 | - | - | - | - | 4 | | | | 02:30
02:45 | 02:45
03:00 | - | 1 | | - | - | - | - | 1 | - | | - | - | 2 | | | | 03:00 | 03:15 | - | - | | - | - | - | - | 1 | - | - | - | - | 1 | | | | 03:15 | 03:30 | - | - | - | - | - | - | - | 1 | - | | | | 1 | | | | 03:30 | 03:45 | - | 2 | 7-8 | 1=0 | 1- | | - | 2 | (=) | - | - | - | 4 | | | | 03:45 | 04:00 | | - | - 1 | - | 16 | - | - | | - | - | - | - | - | | | | 04:00 | 04:15 | - | 1 | - | - | - | - | - | 1 | - | - | | - | 2 | | | | 04:15 | 04:30 | - | 5 | - | - | - | - | - | 1 | - | - | - | - | 6 | | | | 04:30
04:45 | 04:45
05:00 | | 3 | - 15 | - | | - | - | 3 | | | | - | 3 | | | | 05:00 | 05:15 | - 1 | 7 | - | - | - | - | - | 3 | - | - | - | - | 10 | | | | 05:15 | 05:30 | - | 6 | - | - | - | - | - | 8 | - | - | - | - | 14 | | | | 05:30 | 05:45 | - | 7 | - | - | - | | - | 12 | - | - | | - | 19 | | | | 05:45 | 06:00 | - | 4 | | - | - | - | - | 5 | - | - | - | - | 9 | | | | 06:00 | 06:15 | - | 14 | - | - | - | - | - | 13 | - | - | - | - | 27 | | | | 06:15 | 06:30 | - | 8 | - | - | - | - | - | 8 | - | | - | | 16 | | | | 06:30 | 06:45 | - | 12 | - | - | - | - | - | 15 | - | - | - | - | 27 | | | | 06:45
07:00 | 07:00
07:15 | - | 14 | | - | | - | - | 18
14 | - | - 1 | | - | 32
24 | | | | 07:15 | 07:30 | - | 16 | - | - | - | - | - | 19 | - | - | - | - | 35 | | | | 07:30 | 07:45 | - | 7 | - | - | - | - | - | 17 | - | - | - | - | 24 | | | | 07:45 | 08:00 | - | 9 | - | - | - | - | - | 9 | | | | | 18 | | | | 08:00 | 08:15 | - | 7 | - | - | - | - | - | 20 | - | - | - | - | 27 | | | | 08:15 | 08:30 | - | 11 | - | - | - | - | - | 23 | - | - | - | - | 34 | | | | 08:30
08:45 | 08:45
09:00 | - | 9 | | - | - | - | - | 10 | | - | | - | 19
25 | | | | 09:00 | 09:15 | - 1 | 7 | - | - | - | - | - | 13 | - | - 1 | - | - | 20 | | | | 09:15 | 09:30 | - | 15 | - | - | - | - | - | 12 | - | - | - | - | 27 | | | | 09:30 | 09:45 | - | 17 | 7.0 | - | 1- | - | - | 17 | | - | - | - | 34 | | | | 09:45 | 10:00 | | 14 | - 1 | - | 18 | - | - | 16 | - | - | - | - | 30 | | | | 10:00 | 10:15 | - | 14 | • | - | 1- | - | - | 14 | - | - | .= | - | 28 | | | | 10:15 | 10:30 | - | 11 | - | - | - | - | - | 17 | | - | - | - | 28 | | | | 10:30
10:45 | 10:45
11:00 | - | 10
21 | | - | - | - | - | 10
27 | - | | - | - | 20
48 | | | | 11:00 | 11:00 | - | 10 | | - | - | - | - | 24 | - | - | - | - | 34 | | | | 11:15 | 11:30 | - | 12 | - | - | - | - | - | 13 | - | - | - | - | 25 | | | | 11:30 | 11:45 | - | 10 | - | - | - | - | - | 11 | 150 | - | - | - | 21 | | | | 11:45 | 12:00 | - | 13 | - | - | - | 1-1 | - | 21 | - | - | - | - | 34 | | | | 12:00 | 12:15 | - | 16 | - | - | | - | - | 18 | - | - | | - | 34 | | | | 12:15 | 12:30 | - | 8 | | - | - | - | - | 14 | | - | - | | 22 | | | | 12:30 | 12:45 | - | 16
14 | | - | - | - | - | 20
11 | - | - | - | - | 36
25 | | | | 12:45
13:00 | 13:00
13:15 | - | 14 | - | - | - | - | - | 22 | - | - | - | - | 40 | | | | 13:15 | 13:30 | - | 15 | - | - | - | - | - | 13 | - | - | - | - | 28 | | | | 13:30 | 13:45 | - | 16 | - | - | - | - | - | 12 | - | - | - | - | 28 | | | | 13:45 | 14:00 | - | 25 | - | - | 1.5 | -, | - | 18 | - | - | - | - | 43 | | | | 14:00 | 14:15 | - | 17 | 7- | - | 7- | - | - | 8 | - | - | - | - | 25 | | | | 14:15 | 14:30 | - | 18 | - | - | - | - | - | 9 | - | - | | - | 27 | | | | 14:30 | 14:45 | - | 11 | • | - | | - | - | 10 | - | - | | - | 21 | | | | 14:45 | 15:00 | - | 8 | - | 1=3 | | -: | ~ | 13 | ~ | - | - | - | 21 | | | | LOCATION | | ١ | WOODMEAD |) | PROJECT T | ITLE: | | | WOODM | EAD-TRAFFI | IC COUNT | | | | T | |-----------|-------|---------|--------------|------------|-----------|----------|-------|-------------|-----------|------------|------------|----------|------|------------------|----| | PROJECT N | IR: | U | T2022-219 | 7 | INTERSECT | ION: | | DECC 2 EACT | BOUND SHE | I EILING | STATIONS | MARIBORO |) DP | (unitraf | | | SURVEY DA | ATE: | Thursda | y, 03 Novemi | ber 2022 | INTERSECT | ION: | ACC | JESS 2 EAST | BOUNDSHE | LLFILLING | STATION & | MAKLBOKO | JUK | Unitrat | | | SURVEY TI | MES: | 0 | 0Н00-00Н0 | KMZ FILE N | IR: | ACCESS 2 | DATA: | D.L | TYPE: | 4W | /-24H-00-0 | | • |
4 | | | | | | | | | | TOTA | L SUMMA | RY | | | | | | | | TI | ME | | IN | | | | | | OUT | | | | | VOLUME SUMMARY | 1 | | START | END | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | TOTAL | | | 15:00 | 15:15 | | 8 | · . | | · . | | · . | 17 | | - | | | 25 | | | 15:15 | 15:30 | - | 9 | - | | - | - | | 10 | - | - | - | - | 19 | | | 15:30 | 15:45 | - | 9 | - | | - | - | | 10 | - | - | - | - | 19 | | | 15:45 | 16:00 | | 13 | - 6 | | | - | | 12 | - | - | - | - | 25 | 8 | | 16:00 | 16:15 | - | 10 | - 2 | | - | - | | 19 | - | - | | | 29 | 9 | | 16:15 | 16:30 | - | 9 | - | | - | - | | 14 | - | - | - | - | 23 | 9 | | 16:30 | 16:45 | - | 11 | - 6 | | - | - | | 14 | - | - | - | - | 25 | 10 | | 16:45 | 17:00 | - | 9 | - | | - | - | | 21 | - | - | - | - | 30 | 10 | | 17:00 | 17:15 | - | 14 | - | - | - | - | - | 18 | - | - | - | - | 32 | 11 | | 17:15 | 17:30 | - | 12 | - | - | - | - | | 24 | - | - | - | - | 36 | 12 | | 17:30 | 17:45 | - | 9 | - | - | - | - | | 20 | - | - | - | - | 29 | 12 | | 17:45 | 18:00 | - | 14 | - | - | - | - | | 21 | - | - | - | - | 35 | 13 | | 18:00 | 18:15 | - | 15 | - | - | - 2 | - | | 16 | - | - | - | - | 31 | - | | 18:15 | 18:30 | - | 9 | - | - | - | - | | 20 | - | - | - | - | 29 | | | 18.30 | 18.45 | - | 15 | - | - | - | - | | 18 | 1. | - | - | - | 33 | | | 18:45 | 19:00 | - | 7 | - | - | - | - | | 15 | - | - | - | - | 22 | 11 | | 19:00 | 19:15 | - | 17 | - | | - | - | | 6 | - | - | - | - | 23 | 10 | | 19:15 | 19:30 | - | 5 | | | - | - | | 16 | - | | - | - | 21 | 9 | | 19:30 | 19:45 | - | 17 | - | | - | - | | 12 | - | | - | - | 29 | 9 | | 19:45 | 20:00 | | 11 | - | - | - | - | | 11 | - | - | - | - | 22 | 9 | | 20:00 | 20:15 | - | 10 | | | - | - | | 10 | - | | - | - | 20 | 9 | | 20:15 | 20:30 | - | 10 | F. | - | - | - | | 9 | 1- | - | - | - | 19 | 9 | | 20:30 | 20:45 | - | 8 | - | - | - | - | | 10 | - | - | - | - | 18 | 7 | | 20:45 | 21:00 | - | 5 | - | - | - | - | | 4 | - | - | - | - | 9 | 6 | | 21:00 | 21:15 | | 7 | | | - | - | | 4 | - | - | - | | 11 | 5 | | 21:15 | 21:30 | - | 3 | - | - | - | - | | 3 | 10- | - | - | - | 6 | 4 | | 21:30 | 21:45 | - | 4 | F. | - | - | - | | 3 | 141 | - | F) | - | 7 | 3 | | 21:45 | 22:00 | - | 5 | - | • | - | - | • | 5 | - | - | - | - | 10 | 3 | | 22:00 | 22:15 | - | 8 | - | - | - | 1- | | 7 | - | - | - | - | 15 | 3 | | 22:15 | 22:30 | | 7 | - | - | - | - | • | 4 | | - | | - | 11 | 4 | | 22:30 | 22:45 | - | 5 | - | - | - | - | | 3 | 10-1 | - | - | - | 8 | 4 | | 22:45 | 23:00 | - | 4 | - | | - | - | | 2 | - | - | - | - | 6 | 4 | | 23:00 | 23:15 | | 4 | - | - | - | - | | 3 | | - | - | - | 7 | 3 | | 23:15 | 23:30 | - | 1 | - | - | - | - | | - | 1-1 | - | × | - | 1 | 2 | | 23:30 | 23:45 | - | 3 | - | - | - | - | | 3 | - | - | - | - | 6 | 2 | | 23:45 | 00:00 | - | 2 | - | | - | - | | - | - | - | - | - | 2 | 1 | | TO | TAL | - | 830 | - | | - | - | - | 975 | - | | - | - | 1 805 | | ## Lilium Avenue Shell Filling Station (Access A3) | LOCATION
PROJECT NI | p. | WOODMEAD
UT2022-2197 | | | PROJECT TI | ITLE: | | | WOODN | MEAD-TRAFFI | CCOUNT | | | | | |------------------------|----------------|-------------------------|---------------|-----|------------|----------|---------------|-----------|-----------|--------------|--------------|-------------|-----|---------------|------------| | SURVEY DA | | | ay, 03 Novemb | | INTERSECT | ION: | | LILIUM | AVE & ACC | CESS TO SHEL | L FILLING ST | TATION | | (unit | rat | | SURVEY TIM | | | оноо-ооно | | KMZ FILE N | R: | ACCESS 3 | DATA: | J.A.V | TYPE: | 4W | /-24H-00-00 | -C | 6 1 | | | | | | | | | | TOTA | LCLINANAA | DV: | | | | | | | | TIN | ME | | | | ľ | OUT | TOTAL SUMMARY | | | Î | | IN | | VOLUME SU | MMARY | | START | END | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | TOTAL | VIIVIV UCT | | 00:00 | 00:15 | - | - | - | | - | 21 | - | - | - | - | - | 21 | - | | | 00:15 | 00:30 | - | | - | - | - | -0 | - | - | - | | 1 | | 1 | | | 00:30 | 00:45 | | - | - | - | - | - | - | - | - | - | - | - | - | | | 00:45 | 01:00 | - | - | - | - | - | - | - | - | - | - | 2 | 141 | 2 | | | 01:00 | 01:15 | - | - | - | - | 1 | | - | - | - | | - | | 1 | | | 01:15
01:30 | 01:30
01:45 | - | - | | - | - | - | - | - | - | - | 1 | - | 1 | | | 01:45 | 02:00 | - | - | - | - | 1 | - | - | - | - | - | - 1 | - | 1 | | | 02:00 | 02:15 | - | - | - | _ | - | - | - | _ | - | - | 2 | | 2 | | | 02:15 | 02:30 | - | - | - | - | 1 | - | - | - | - | - | 1 | - | 2 | | | 02:30 | 02:45 | - | - | - | - | - | - | - | | - | | - | - | - | | | 02:45 | 03:00 | - | - | - | - | - | - | - | - | - | - | - | - | - | | | 03:00 | 03:15 | 1- | - | - | - | 1 | - | - | - | - | 1=1 | 1 | 27 | 2 | | | 03:15 | 03:30 | - | - | - | - | - | - | - | - | - | - | - | - | - | | | 03:30 | 03:45 | - | - | - | - | - | - | - | - | - | - | - | - | - | | | 03:45 | 04:00 | - | - | - | - | - | - | - | - | - | - | - | - | - | | | 04:00
04:15 | 04:15
04:30 | - | - | - | - | 1 | - | - | - | - | - | 2 | - | 3 | | | 04:30 | 04:45 | - | - | - | - | 1 | _ | | | - | - | 1 | - | 2 | | | 04:45 | 05:00 | - | - | - | - | 3 | - | - | - | - | - | 3 | - | 6 | | | 05:00 | 05:15 | - | - | - | - | 2 | - | - | - | - | - | 5 | - | 7 | | | 05:15 | 05:30 | - | - | - | -: | 4 | -: | - | -: | - | - | 7 | - | 11 | | | 05:30 | 05:45 | - | - | - | - | 9 | - | - | - | - | | 2 | - | 11 | | | 05:45 | 06:00 | - | - | - | - | 5 | - | - | - | - | - | 5 | - | 10 | | | 06:00 | 06:15 | - | - | - | - | 3 | | - | - | - | - | 5 | - | 8 | | | 06:15
06:30 | 06:30
06:45 | - | - | | - | 10
17 | - | - | - | - | - | 10 | - | 20 | | | 06:45 | 06:43 | - | - | - | - | 14 | - | - | - | - | - | 7 | - | 27 | | | 07:00 | 07:15 | - | - | - | - | 16 | - | - | | - | | 8 | | 24 | | | 07:15 | 07:30 | - | - | - | - | 17 | - | - | - | - | - | 15 | - | 32 | | | 07:30 | 07:45 | - | - | - | | 22 | | - | | - | | 13 | Ψ: | 35 | | | 07:45 | 08:00 | - | - | - | | 14 | - | - | | - | - | 8 | - | 22 | | | 08:00 | 08:15 | | - | - | - | 13 | - | - | - | - | - | 11 | - | 24 | | | 08:15 | 08:30 | - | - | - | - | 22 | 2 | - | 21 | - | 127 | 9 | 27 | 31 | | | 08:30 | 08:45 | - | - | 1- | - | 7 | - | - | - | - | - | 7 | - | 14 | | | 08:45
09:00 | 09:00
09:15 | - | - | - | - | 5
10 | | - | - | - | - | 3 | - | 10 | | | 09:00 | 09:13 | - | - | - | - | 4 | - | - | - | - | - | 7 | - | 11 | | | 09:30 | 09:45 | - | - | - | _ | 11 | - | - | - | - | - | 6 | - | 17 | | | 09:45 | 10:00 | - | - | - | - | 8 | - | - | - | - | - | 10 | - | 18 | | | 10:00 | 10:15 | - | - | | - 1 | 9 | - | - | - | - | 1-1 | 8 | - | 17 | | | 10:15 | 10:30 | (- | - | - | - | 10 | - | (- | - | - | - | 6 | - | 16 | | | 10:30 | 10:45 | - | - | - | - | 9 | - | - | - | - | - | 9 | 41 | 18 | | | 10:45 | 11:00 | - | - | - | - % | 11 | - | - | | - | 1-11 | 5 | | 16 | | | 11:00 | 11:15 | - | - | - | - | 15 | - | 1- | - | - | - | 9 | - | 24 | | | 11:15
11:30 | 11:30
11:45 | - | - | - | - | 17 | - | - | - | - | - | 5 4 | - | 6 | | | 11:45 | 12:00 | - | - | - | - | 16 | - | - | - | - | - | 8 | - | 24 | | | 12:00 | 12:15 | - | - | - | - | 12 | - | - | - | - | - | 11 | - | 23 | | | 12:15 | 12:30 | - | - | - | - | 14 | - | - | - | - | - | 10 | - | 24 | | | 12:30 | 12:45 | - | - | - | - | 14 | - | - | - | - | - | 16 | - | 30 | | | 12:45 | 13:00 | - | - | - | - | 15 | - | - | - | - | - | 10 | - | 25 | | | 13:00 | 13:15 | - | - | - | - | 16 | - | - | - | - | - | 13 | - | 29 | | | 13:15 | 13:30 | - | - | - | - | 10 | - | - | - | - | - | 10 | - | 20 | | | 13:30 | 13:45 | - | - | - | | 5 | - | - | 1=0 | - | 1-11 | 14 | | 19 | | | 13:45 | 14:00 | - | - | - | | 7 | | - | | - | | 10 | | 17 | | | 14:00 | 14:15 | - | - | - | - | 9 | - | - | - | - | - | 15 | - | 24 | | | 14:15
14:30 | 14:30
14:45 | - | - | - | | 10 | - | - | - | - | - | 12
8 | - | 19 | | | | C+.+1 | 100 | - | 1 - | - | 13 | - | - | - | - | - | 8 | - | 21 | | | LOCATION | | ١ | WOODMEA | D | PROJECT T | ITLE: | | | WOODM | EAD-TRAFF | IC COUNT | | | | | I | |------------|-------|-------------|----------------------------|---|------------|-------|----------|----------|------------|------------|--------------|-------------|-----|-------|-------|----------| | PROJECT N | IR: | U | T2022-219 | 7 | INTERSECT | ION: | | THUM | AVE 8. ACC | ESS TO SUE | LL FILLING S | TATION | | | l . | | | SURVEY DA | ATE: | Thursda | Thursday, 03 November 2022 | | | IOIV. | | LILION | AVE & ACC | E33 10 3HE | LE FILLING 3 | IAHON | | | itraf | l . | | SURVEY TIP | MES: | 00H00-00H00 | | | KMZ FILE N | IR: | ACCESS 3 | DATA: | J.A.V | TYPE: | 4W | /-24H-00-00 |)-C | • | | J | | | | | | | | | | | - 11 | | | | | | | 1 | | | | | | | , | | TOTA | AL SUMMA | .RY | | | | | | | 4 | | | ME | | | | | OUT | | | | | | IN | | VOLUN | | | | START | END | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | TOTAL | | <u> </u> | | 15:00 | 15:15 | - | - | - | | 10 | • | • | - | - | | 4 | - | 14 | | 1 1 | | 15:15 | 15:30 | - | - | - | - 81 | 9 | • | - | - | - | (*) | 11 | - | 20 | | 1 1 | | 15:30 | 15:45 | - | - | - | | 15 | - | - | - | - | - | 10 | - | 25 | | | | 15:45 | 16:00 | - | | - | • | 11 | - | | - | | | 4 | - | 15 | | 74 | | 16:00 | 16:15 | - | | - | • | 14 | • | - | - | - | | 6 | - | 20 | | 80 | | 16:15 | 16:30 | - | - | - | - | 16 | - | - | - | - | - | 16 | - | 32 | | 92 | | 16:30 | 16:45 | - | - | - | - | 16 | - | - | - | - | - | 9 | - | 25 | | 92 | | 16:45 | 17:00 | - | - | - | - | 24 | - | - | - | - | - | 17 | - | 41 | | 118 | | 17:00 | 17:15 | - | - | - | - | 25 | - | - | - | - | - | 17 | - | 42 | | 140 | | 17:15 | 17:30 | - | - | - | - | 30 | - | - | - | - | - | 16 | - | 46 | | 154 | | 17:30 | 17:45 | - | - | - | - | 22 | - | - | - | - | - | 13 | - | 35 | | 164 | | 17:45 | 18:00 | - | - | - | - | 23 | - | - | - | - | - | 14 | - | 37 | | 160 | | 18:00 | 18:15 | - | - | - | -1 | 19 | - | - | - | - | - | 8 | - | 27 | | | | 18:15 | 18:30 | - | - | - | - | 17 | - | - | - | - | - | 9 | - | 26 | | | | 18:30 | 18:45 | - | - | - | + | 11 | - | - | - | - | - | 4 | | 15 | | | | 18:45 | 19:00 | - | - | - | - | 14 | - | - | - | -
| - | 10 | - | 24 | | 92 | | 19:00 | 19:15 | - | | - | - | 14 | - | - | - | - | - | 8 | - | 22 | | 87 | | 19:15 | 19:30 | - | - | - | - | 13 | - | - | - | - | - | 15 | - | 28 | | 89 | | 19:30 | 19:45 | - | - | - | -, | 13 | - | - | - | - | - | 9 | - | 22 | | 96 | | 19:45 | 20:00 | - | 11- | - | * | 7 | - | - | - | - | | 8 | - | 15 | | 87 | | 20:00 | 20:15 | - | 1.4 | - | ¥. | 11 | - | - | - | - | - | 9 | - | 20 | | 85 | | 20:15 | 20:30 | | - | - | | 5 | - | - | - | - | - | 6 | - | 11 | | 68 | | 20:30 | 20:45 | | - | - | • | 13 | | - | - | | - | 9 | - | 22 | | 68 | | 20:45 | 21:00 | | - | - | • | 4 | | | | - | - | 3 | - | 7 | | 60 | | 21:00 | 21:15 | - | - | - | - | 6 | - | - | - | - | - | 8 | - | 14 | | 54 | | 21:15 | 21:30 | - | - | - | -1 | 5 | - | - | - | - | - | 3 | - | 8 | | 51 | | 21:30 | 21:45 | | 180 | - | | 2 | | - | | × | - | 4 | • | 6 | | 35 | | 21:45 | 22:00 | - | - | - | - | 3 | - | - | - | - | - | 4 | - | 7 | | 35 | | 22:00 | 22:15 | - | - | - | - | 2 | - | - | - | - | - | 5 | - | 7 | | 28 | | 22:15 | 22:30 | | 17 | - | *1 | 3 | - | | | - | - | 1 | - | 4 | | 24 | | 22:30 | 22:45 | - | 1.4 | - | - | | - | - | - | - | - | 1 | - | 1 | | 19 | | 22:45 | 23:00 | - | - | - | | 1 | - | - | - | - | - | - | - | 1 | | 13 | | 23:00 | 23:15 | - | 115 | - | - | 2 | - | - | - | - | - | 2 | - | 4 | | 10 | | 23:15 | 23:30 | - | 1.5 | - | - 61 | 1 | | - | - | - | - | 1 | - | 2 | | 8 | | 23:30 | 23:45 | - | - | - | - | 1 | - | - | - | - | - | 1 | - | 2 | | 9 | | 23:45 | 00:00 | | - | - | - | 1 | - | - | - | - | - | 2 | | 3 | | 11 | | TO | TAL | - | - | - | - | 826 | - | - | - | - | - | 625 | - | 1 451 | | | ## Western Service Road Caltex Filling Station (Access A4) | LOCATION PROJECT NI | R· | WOODMEAD
UT2022-2197 | | | PROJECT TI | TLE: | | | WOODN | /IEAD-TRAFFI | C COUNT | | | | | | |---------------------|----------------|-------------------------|---------------|----|------------|----------|---------------|------------|------------|--------------|-------------|-------------|-----|----------------|--|------------| | SURVEY DA | | | ay, 03 Novemb | | INTERSECTI | ON: | V | VESTERN SE | RVICE RD & | V | unit | rat | | | | | | SURVEY TIM | ИES: | 0 | оноо-ооно | 10 | KMZ FILE N | R: | ACCESS 4 | DATA: | J.A.V | TYPE: | 4V | V-24H-00-00 | | | | | | | | | | | | | TOTA | I SUMMA | DV | | | | | | | | | TIN | MF | | | | | IN | TOTAL SUMMARY | | | | | OUT | | VOLUME SUMMARY | | | | START | END | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | TOTAL | | | | 00:00 | 00:15 | - | - | - | - | 4 | - | - | - | | - | 3 | | 7 | | | | 00:15 | 00:30 | - | - | - | | 5 | 2 | v | - | | - | 4 | 41 | 9 | | | | 00:30 | 00:45 | -1 | - | - | - | 4 | - | - | - | - | - | 4 | | 8 | | | | 00:45 | 01:00 | - | - | - | - | 1 | - | - | - | - | - | 2 | - | 3 | | 27 | | 01:00 | 01:15 | w. | - | - | - | - | - | - | - | | 141 | 1 | | 1 | | 21 | | 01:15 | 01:30 | | 7- | - | - | 2 | - | - | - | | - | 1 | | 3 | | 15 | | 01:30
01:45 | 01:45
02:00 | - | - | - | - | - 4 | - | - | - | - | - | 1 | - | 1 | | 15 | | 02:00 | 02:00 | - | - | - | - | - | - | - | - | - | - | - | - | | | 13 | | 02:15 | 02:30 | - | - | _ | - | 2 | _ | - | - | - | - | 1 | 20 | 3 | | 12 | | 02:30 | 02:45 | - | - | - | - | 1 | - | - | - | - | - | 1 | - | 2 | | 6 | | 02:45 | 03:00 | - | - | - | - | 2 | | - | - | ъ. | - | 2 | - | 4 | | 9 | | 03:00 | 03:15 | - | | - | - | 1 | - | 121 | - | | - | 2 | | 3 | | 12 | | 03:15 | 03:30 | - | - | - | | - | - | - | 1 | - | - | 1 | | 1 | | 10 | | 03:30 | 03:45 | - | - | - | - | 1 | | - | - | - | - | - | | 1 | | 9 | | 03:45 | 04:00 | - | - | - | - | 1 | - | - | - | | - | 1 | | 2 | | 7 | | 04:00 | 04:15 | | - | - | - | 2 | - | - | - | - | - | 1 | - | 3 | | 7 | | 04:15 | 04:30 | - | - | - | - | 2 | - | - | - | - | - | 3 | | 5 | | 11 | | 04:30
04:45 | 04:45
05:00 | - | - | - | | 3 | - | - | - | - | - | 5 | - | 5
9 | | 15 | | 05:00 | 05:00 | - | - | - | - | 4 | - | - | - | - | - | 3 | - | 7 | | 22 | | 05:15 | 05:30 | - | - | - | - | 3 | - | - | - | - | - | 5 | - | 8 | | 29 | | 05:30 | 05:45 | - | - | _ | - | 9 | _ | - | - | - | - | 12 | - | 21 | | 45 | | 05:45 | 06:00 | - | - | _ | - | 14 | - | - | - | | - | 18 | - | 32 | | 68 | | 06:00 | 06:15 | - | - | - | - | 12 | - | - | - | | - | 13 | 51 | 25 | | | | 06:15 | 06:30 | v | - | - | - | 6 | - | v | - | - | ~ | 23 | 41 | 29 | | | | 06:30 | 06:45 | - | - | - | - | 31 | - | - | 1- | - | - | 15 | | 46 | | | | 06:45 | 07:00 | | - | - | - | 30 | - | | - | | 1-1 | 31 | | 61 | | 161 | | 07:00 | 07:15 | 21 | - | - | - | 46 | - | - | - | | - 2 | 34 | 27 | 80 | | 216 | | 07:15 | 07:30 | - | - | - | - | 27 | - | - | - | - | - | 32 | - | 59 | | 246 | | 07:30 | 07:45 | - | - | - | - | 29 | - | - | - | - | - | 25 | - | 54
75 | | 254 | | 07:45
08:00 | 08:00
08:15 | - | - | - | - | 41
30 | - | - | - | - | - | 34 | - | 66 | | 268
254 | | 08:15 | 08:30 | - | - | 2 | - | 43 | - | - | - | - | - | 42 | - | 85 | | 280 | | 08:30 | 08:45 | - | - | - | - | 46 | - | - | - | - | - | 45 | - | 91 | | 317 | | 08:45 | 09:00 | | - | - | - | 33 | | - | - | - | .=: | 41 | | 74 | | 316 | | 09:00 | 09:15 | - | - | - | - | 37 | - | - | - | - | - | 29 | - | 66 | | | | 09:15 | 09:30 | - | 0-0 | - | - | 41 | - | - | - | - | 1=1 | 30 | -/ | 71 | | | | 09:30 | 09:45 | - | 12 | - | | 38 | | - | - | - | - | 39 | 3-1 | 77 | | | | 09:45 | 10:00 | - | - | - | - | 41 | - | - | - | - | 120 | 28 | | 69 | | 283 | | 10:00 | 10:15 | -> | 7- | - | | 40 | - | - | - | -1 | - | 32 | | 72 | | 289 | | 10:15 | 10:30 | - | - | - | - | 28 | | - | 1- | | - | 38 | - 5 | 66 | | 284 | | 10:30 | 10:45 | | - | - | - | 35 | - | - | - | -1 | - | 25 | - | 60 | | 267 | | 10:45
11:00 | 11:00
11:15 | - | - | - | - | 38 | | | - | | - | 30
44 | - | 77 | | 266 | | 11:00 | 11:15 | - | - | - | - | 55 | - | - | - | - | - | 34 | - | 89 | | 271
294 | | 11:30 | 11:45 | - | - | - | - | 41 | - | - | - | - | - | 38 | - | 79 | | 313 | | 11:45 | 12:00 | - | - | - | - | 31 | - | - | - | - | - | 41 | | 72 | | 317 | | 12:00 | 12:15 | - | - | - | - | 46 | - | - | - | | - | 41 | | 87 | | 327 | | 12:15 | 12:30 | - | - | - | - | 45 | - | - | 15 | - | - | 40 | - | 85 | | 323 | | 12:30 | 12:45 | - | - | - | - | 41 | - | - | 6= | - | - | 37 | - | 78 | | 322 | | 12:45 | 13:00 | - | - | - | - | 39 | - | - | - | - | - | 43 | - | 82 | | 332 | | 13:00 | 13:15 | - | - | - | - | 40 | + | - | 12 | - | - | 53 | - | 93 | | 338 | | 13:15 | 13:30 | | - | - | - | 41 | - | - | - | - | - | 37 | -7 | 78 | | 331 | | 13:30 | 13:45 | | 2.5 | - | - | 45 | - | - | - | - | .= | 36 | | 81 | | 334 | | 13:45 | 14:00 | - | - | - | | 48 | 2 | (2) | - | - | - | 27 | | 75 | | 327 | | 14:00 | 14:15 | - | - | - | - | 34
39 | | - | - | - | - | 23
37 | - | 57
76 | | 291 | | 14:15
14:30 | 14:30
14:45 | - | - | - | - | 35 | - | - | - | | - | 29 | - | 64 | | 289 | | 14.50 | 15:00 | - | - | - | - | 31 | - | - | - | - | - | 33 | - | 64 | | 272
261 | | LOCATION | | ١ | WOODMEA | D | PROJECT T | ITLE: | | | WOODM | EAD-TRAFF | C COUNT | | | | | | |-----------|--------------|---------|-------------|----------|------------------------------------|----------|----------|-------------|------------|-----------|-------------|-------------|-----|----------|---------|-----| | PROJECT N | IR: | U | T2022-219 | 7 | INTERSECT | ION- | v | /ESTERN SE | RVICE RD & | ACCESS TO | CALTEX EILI | ING STATIO | N | 115 | itraf | | | SURVEY DA | ATE: | Thursda | y, 03 Novem | ber 2022 | IIIII | 1014. | | LOTEINITOLI | WICE NO G | ACCESS 10 | CALIENTIE | interialie | ., | | IILI di | | | SURVEY TI | MES: | 0 | 00H00-00H00 | | | IR: | ACCESS 4 | DATA: | J.A.V | TYPE: | 41/ | /-24H-00-00 |)-C | • | TOTAL SUMMARY IN OUT VOLUME SUMMA | | | | | | | | | | | | | | ME | | | | | IN | | _ | | | | OUT | | | | | | START | END | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | TOTAL | | | | 15:00 | 15:15 | - | - | - | - | 46 | - | - | - | - | - | 37 | - | 83 | | | | 15:15 | 15:30 | - | - | - | - | 36 | - | - | - | - | - | 43 | - | 79 | | | | 15:30 | 15:45 | - | - | - | - | 39 | - | - | - | - | - | 35 | - | 74 | | - | | 15:45 | 16:00 | - | - | - | - | 44 | - | - | - | - | - | 33 | - | 77 | | 313 | | 16:00 | 16:15 | - | - | - | - | 20 | - | - | - | - | - | 27 | - | 47 | | 277 | | 16:15 | 16:30 | - | - | - | - | 24 | - | - | - | • | • | 35 | - | 59 | | 257 | | 16:30 | 16:45 | | - | | | 28 | - | - | | | - | 34 | - | 62 | | 245 | | 16:45 | 17:00 | - | - | - | - | 33 | - | - | - | - | - | 35 | - | 68 | | 236 | | 17:00 | 17:15 | - | - | - | - | 29 | - | - | - | - | - | 35 | - | 64 | | 253 | | 17:15 | 17:30 | - | - | - | | 27 | | - | • | • | • | 30 | - | 57 | | 251 | | 17:30 | 17:45 | - | - | - | | 42 | - | - | - | - | - | 37 | - | 79 | | 268 | | 17:45 | 18:00 | - | - | - | - | 33 | - | - | - | - | - | 24 | - | 57 | | 257 | | 18:00 | 18:15 | - | - | - | - | 36 | - | - | - | - | - | 25 | - | 61 | | | | 18:15 | 18:30 | - | - | - | - | 37 | - | - | - | - | - | 29 | - | 66 | | | | 18:30 | 18:45 | - | - | - | - | 33 | - | - | - | - | - | 26 | - | 59 | | | | 18:45 | 19:00 | - | - | - | - | 18 | - | - | - | - | - | 19 | - | 37 | | 223 | | 19:00 | 19:15 | - | - | - | - | 24 | - | - | - | - | - | 19 | - | 43 | | 205 | | 19:15 | 19:30 | - | - | - | - | 18 | - | - | - | - | - | 23 | - | 41 | | 180 | | 19:30 | 19:45 | - | - | - | - | 21 | - | - | - | - | - | 23 | - | 44 | | 165 | | 19:45 | 20:00 | - | - | - | | 15 | - | - | - | - | - | 17 | - | 32 | | 160 | | 20:00 | 20:15 | | - | - | - | 20 | - | - | • | - | | 16 | | 36 | | 153 | | 20:15 | 20:30 | - | - | - | - | 24 | - | - | - | - | • | 15 | • | 39 | | 151 | | 20:30 | 20:45 | • | | - | - | 12 | - | - | • | - | • | 15 | - | 27 | | 134 | | 20:45 | 21:00 | | - | - | - | 22 | - | - | • | - | • | 20 | - | 42
30 | | 144 | | 21:00 | 21:15 | - | - | - | | 18 | - | - | • | | • | 12 | - | | | 138 | | 21:15 | 21:30 | | | - | - | 18
19 | - | - | • | - | • | 10 | - | 28 | | 127 | | 21:30 | | - | • | - | - | | | - | - | - |
- | 17 | - | 36 | | 136 | | 22:00 | 22:00 | | - | - | 172.1 | 10
15 | | - | • | • | • | 7 | | 18
22 | | 112 | | 22:00 | 22:15 | - | - | - | | 15 | | | - | - | - | 7 | - | 22 | | 104 | | 22:15 | 22:30 | | - | - | - | 16 | | - | • | - | • | 9 | - | 25 | | 98 | | 22:45 | 23:00 | - | - | | - | 11 | - | - | - | - | - | 8 | - | | | 87 | | 23:00 | 23:00 | - | - | - | - | 7 | - | - | - | - | - | 3 | - | 19
10 | | 88 | | 23:00 | 23:15 | | | | | 5 | | | | | | 3 | | | | 76 | | 23:15 | 23:30 | - | - | - | - | 3 | - | - | • | - | • | 3 | - | 8 | | 62 | | | | | - | - | - | 4 | - | - | - | - | - | | - | 6 | | 43 | | 23:45 | 00:00
TAL | - | - | - | - | _ | | - | - | - | - | 3 024 | - | 7 | | 31 | | 10 | TAL | - | - | - | - | 2 207 | - | - | - | - | - | 2 034 | - | 4 241 | | l. | # Woodlands Drive and Western Service Road Engen Filling Station (Access A5) | OCATION | | ٧ | WOODMEAL |) | PROJECT TI | TLE: | | | WOODN | IEAD-TRAFFI | C COUNT | | | | | | |-------------------------|----------------|-----|----------------------------|-----|------------|----------|----------|---------------------------------------|------------|-------------|------------|-------------|-----|----------|--------------------|----| | ROJECT N | | | JT2022-219 | | INTERSECT | ION: | W | VESTERN SEI | RVICE RD & | ACCESS TO | ENGEN FILL | ING STATIO | N | (III | itraf | | | SURVEY DA
SURVEY TIN | | | oy, 03 Novemb
0H00-00H0 | | KMZ FILE N | R: | ACCESS 5 | DATA: | J.A.V | TYPE: | 4W | /-24H-00-00 | | | IILIGI | TOTA | L SUMMA | RY | | | | | WOLLIA | 45 61 14 44 44 8 7 | | | START | ME
END | 1 | 2 | 3 | 4 | OUT
5 | 6 | 7 | 8 | 9 | 10 | IN
11 | 12 | TOTAL | ME SUMMARY | | | 00:00 | 00:15 | | - | - | - | 2 | - | , , , , , , , , , , , , , , , , , , , | - | - | - | 1 | - | 3 | | | | 00:15 | 00:30 | - | - | - | - | 1 | - | - | - | - | - | 2 | - | 3 | | | | 00:30 | 00:45 | - | | - | - | - | - | - | 7- | - | - | - | - | - | | | | 00:45 | 01:00 | - | - | - | - | - | | - | - | - | | 22. | | | | 1 | | 01:00 | 01:15 | - | 18 | - | - | 1.5 | - | - | | - | - | - | - | - | | | | 01:15 | 01:30 | ¥ | - | - | - | - | - | - | - | - | - | - | - | - | | | | 01:30 | 01:45 | | - | - | - | 2 | - | - | - | - | - | 1 | - | 3 | | | | 01:45 | 02:00
02:15 | | 1.0 | - | - | - | | | - | - | - | - | - | - | | | | 02:00 | 02:30 | - | - | - | - | - | - | - | 7- | - | - | - | - | - | | | | 02:30 | 02:45 | | - | - | _ | | - | - | - | - | - | - | - | - | | | | 02:45 | 03:00 | - | - 3 | - | - | | - | - | | - | - | - | - | _ | | | | 03:00 | 03:15 | er. | - | - | - | - | - | - | 7- | - | - | - | (4) | - | | | | 03:15 | 03:30 | - | | - | - | | - | - | 7- | - | - | - | - | - | | | | 03:30 | 03:45 | - | - | - | - | 1- | - | - | | - | - | 2 | - | 2 | | | | 03:45 | 04:00 | | - | - | - | - | - | - | - | - | - | - | - | - | | | | 04:00 | 04:15 | -8 | - | - | - | - 1 | - | - | - | - | - | 1 | - | 2 | | | | 04:15 | 04:30
04:45 | | - | - | - | 2 | | - | - | - | - | - | - | 2 | | | | 04:45 | 05:00 | | | - | _ | - | - | - | | - | - | 1 | - | 1 | | | | 05:00 | 05:15 | - | - | - | - | 2 | - | - | (- | - | - | 1 | - | 3 | | | | 05:15 | 05:30 | - | - | - | - | 3 | - | - | - | - | - | 3 | - | 6 | | 1 | | 05:30 | 05:45 | - | | - | - | 2 | - | - | 7- | - | - | 4 | - | 6 | | 1 | | 05:45 | 06:00 | | - | - | - | 1 | - | - | - | - | - | 3 | - | 4 | | 1 | | 06:00 | 06:15 | - | - | - | - | 4 | - | - | - | - | - | 7 | 1=1 | 11 | | | | 06:15 | 06:30 | - | | - | - | 9 | - | - | | - | - | 9 | - | 18 | | | | 06:30
06:45 | 06:45
07:00 | - | - | - | - | 12 | - | - | - | - | - | 16 | - | 16
28 | | 4 | | 07:00 | 07:00 | - | - | - | _ | 23 | - | - | - | - | - | 21 | - | 44 | | 10 | | 07:15 | 07:30 | - | 9 | _ | _ | 25 | - | - | - | - | - | 21 | - | 46 | | 13 | | 07:30 | 07:45 | - | - | _ | - | 26 | _ | - | - | - | - | 23 | - | 49 | | 16 | | 07:45 | 08:00 | | - | - | - | 25 | - | - | - | - | - | 26 | - | 51 | | 19 | | 08:00 | 08:15 | - | ÷ | - | - | 23 | - | - | - | - | - | 30 | - | 53 | | 19 | | 08:15 | 08:30 | - | - | - | - | 20 | - | - | 7-2 | - | - | 19 | - | 39 | | 19 | | 08:30 | 08:45 | - | - | - | - | 21 | - | - | | - | - | 16 | - | 37 | | 18 | | 08:45 | 09:00
09:15 | | | - | - | 14
11 | - | - | - | - | | 20 | - | 34 | | 16 | | 09:00
09:15 | 09:15 | - | - | - | - | 9 | - | - | 7- | - | - | 14 | - | 25 | | | | 09:30 | 09:45 | - | - | - | - | 10 | - | - | - | - | - | 10 | - | 20 | | | | 09:45 | 10:00 | - | i e | - | - | 10 | - | = | | - | - | 15 | - | 25 | | g | | 10:00 | 10:15 | - | - | - | - | 9 | - | - | - | - | - | 3 | - | 12 | | 7 | | 10:15 | 10:30 | - | - | - | - 1 | 11 | - | - | 1- | - | - | 13 | 7-7 | 24 | | 8 | | 10:30 | 10:45 | | - | - | - | 7 | - | - | - | | - | 11 | - | 18 | | 7 | | 10:45 | 11:00 | - | | - | - | 6 | - | - | | - | = | 10 | - | 16 | | 7 | | 11:00
11:15 | 11:15
11:30 | - | - | - | - | 7 | - | - | - | - | - | 12
7 | - | 20
14 | | 7 | | 11:15 | 11:30 | - | - | - | - | 5 | - | - | - | - | - | 7 | - | 12 | | 6 | | 11:45 | 12:00 | - | - | - | - | 8 | | - | | - | - | 9 | - | 17 | | | | 12:00 | 12:15 | | - | - | - | 7 | - | - | 7- | - | - | 7 | - | 14 | | | | 12:15 | 12:30 | | - | 1-1 | - | 8 | - | - | | 1-1 | - | 11 | - | 19 | | (| | 12:30 | 12:45 | - | Æ | - | - | 8 | - | - | - | - | 9 | 9 | - | 17 | | | | 12:45 | 13:00 | w. | - | - | - | 11 | - | - | - | - | - | 14 | - | 25 | | | | 13:00 | 13:15 | - | - | - | - | 9 | - | - | | - | - | 6 | - | 15 | | | | 13:15 | 13:30 | - | - | - | - | 10 | - | - | - | - | - | 10 | - | 20 | | | | 13:30 | 13:45 | - | (%) | - | - | 8 | - 1 | - | - | - | - | 13 | - | 21 | | | | 13:45
14:00 | 14:00
14:15 | - | - | - | - | 13
21 | - | - | - | - | - | 16
21 | - | 29
42 | | 11 | | 14:00 | 14:15 | - | - | - | - | 5 | - | - | - | - | - | 12 | - | 17 | | 11 | | 14:30 | 14:45 | - | - | - | - | 7 | - | - | - | - | - | 12 | - | 19 | | 10 | | 14:45 | 15:00 | | - | - | - | 5 | - | - | 7-2 | - | - | 8 | - | 13 | | 9 | PROJECT NE
SURVEY DAT
SURVEY TIM | TE: | | T2022-219 | 7 | | | | | | | | | | | | |--|----------------|---------|-------------|----------|------------|------|----------|-------------|------------|-----------|------------|-------------|----|------------------|----------| | | | Thursda | | | INTERCECT | TON: | | (CCTCDA) CC | W/ICE DD 0 | ACCECC TO | ENCEN EU I | INC CTATIO | | 11-5 | | | SURVEYTIM | MES: | | y, 03 Novem | ber 2022 | INTERSECT | ION: | * | ESTERN SER | VICE KD & | ACCESS TO | ENGEN FILL | ING STATIO | N | (unitraf | | | | | 0 | оноо-ооно | 00 | KMZ FILE N | IR: | ACCESS 5 | DATA: | J.A.V | TYPE: | 4W | /-24H-00-00 | TOTA | L SUMMA | RY | | | | | | | | TIM | | | | | | OUT | | | | | | IN | | VOLUME SUMMARY | | | START | END | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | TOTAL | | | 15:00 | 15:15 | - | - | - | - | 7 | - | - | - | 74 | | 6 | | 13 | | | 15:15 | 15:30 | - | - | - | - | 7 | - | - | - | - | - | 9 | - | 16 | 1 1 | | 15:30 | 15:45 | - | - | - | - | 7 | - | - | - | - | - | 8 | - | 15 | | | 15:45 | 16:00 | - | - | - | | 14 | - | - | - | - | | 14 | - | 28 | 72 | | 16:00 | 16:15 | - | - | - | | 6 | - | - | - | - | - | 10 | - | 16 | 75 | | 16:15 | 16:30 | - | - | - | - | 18 | - | - | | - | - | 19 | - | 37 | 96 | | 16:30 | 16:45 | - | - | - | - | 12 | - | - | - | - | - | 18 | - | 30 | 111 | | 16:45 | 17:00 | - | - | - | - | 9 | - | - | - | | - | 15 | - | 24 | 107 | | 17:00 | 17:15 | - | - | - | - | 22 | - | - | - | - | - | 16 | • | 38 | 129 | | 17:15 | 17:30 | - | - | - | - | 11 | - | - | - | - | - | 21 | - | 32 | 124 | | 17:30 | 17:45 | - | - | - | - | 14 | - | - | - | - | - | 13 | - | 27 | 121 | | 17:45 | 18:00 | - | - | - | - | 12 | - | - | - | - | - | 14 | - | 26 | 123 | | 18:00 | 18:15 | - | - | - | - | 10 | - | - | - | - | - | 13 | - | 23 | 1 1 | | 18:15 | 18:30 | - | - | - | - | 8 | - | - | - | - | - | 8 | - | 16 | 1 1 | | 18:30 | 18:45 | - | - | - | - | 4 | - | - | - | - | - | 6 | - | 10 | | | 18:45 | 19:00 | | - | - | - | 4 | - | - | - | - | - | 6 | - | 10 | 59 | | 19:00 | 19:15
19:30 | | • | - | - | 3 | • | - | - | - | - | 10 | - | 5
15 | 41 | | 19:15
19:30 | 19:30 | - | - | - | - | 5 | - | - | | - | - | 3 | - | 8 | 40 | | 19:45 | 20:00 | - | - | - | - | 5 | - | - | - | • | - | 7 | - | 12 | 38 | | 20:00 | 20:00 | | | | - | 4 | | - | | - | - | 6 | | 10 | 40 | | 20:15 | 20:30 | - | - | - | | 7 | - | - | - | - | | 9 | - | 16 | 45 | | 20:30 | 20:45 | - | - | - | - | 1 | - | - | - | - | - | 4 | - | 5 | 46 | | 20:45 | 21:00 | - | - | - | | 1 | - | - | - | - | | | | 1 | 43
32 | | 21:00 | 21:15 | - | | - | - | 4 | - | - | - | - | - | 3 | - | 7 | 29 | | 21:15 | 21:30 | | - | - | - | 2 | - | - | - | | | 3 | - | 5 | 18 | | 21:30 | 21:45 | - | - | | | 1 | - | - | - | - | | 4 | - | 5 | 18 | | 21:45 | 22:00 | | - | - | - | 2 | | - | | | - | 1 | - | 3 | 20 | | 22:00 | 22:15 | | | - | | 2 | - | | - | - | | 4 | | 6 | 19 | | 22:15 | 22:30 | - | - | | - | - | | - | | | - | - | - | | 14 | | 22:30 | 22:45 | - | - | - | - | 1 | - | - | - | - | - | 1 | - | 2 | 11 | | 22:45 | 23:00 | - | - | - | - | 1 | | - | - | - | - | 2 | - | 3 | 11 | | 23:00 | 23:15 | | - | | - | - | | - | - | - | - | 1 | - | 1 | 6 | | 23:15 | 23:30 | - | - | | - | - | | - | | - | - | 1 | - | 1 | 7 | | 23:30 | 23:45 | - | - | - | - | 1 | - | - | - | - | - | 2 | - | 3 | 8 | | 23:45 | 00:00 | | - | - | - | - | - | - | - | - | - | - | - | | 5 | | TOT | | - | _ | - | - | 649 | - | - | - | - | - | 759 | | 1 408 | 1 | # **ANNEXURE B: SIDRA ANALYSIS OUTPUT FILES** Site: 1 [Lillium Ave and Zinia Drive - Intersection 1 - AM Peak] Lillium Ave and Zinia Drive - Intersection 1 Site Category: (None) Stop (All-Way) | Mov | Turn | Demand | Flows | Deg. | Average | Level of | 95% Back (| of Queue | Prop. | Effective | Aver. No. | Average | |----------|-------------|----------------|---------|-------------|--------------
----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/t | | East Z | inia Drive | | | | | | | | | | | | | 5 | T1 | 483 | 4.1 | 0.874 | 33.5 | LOS D | 9.7 | 70.4 | 1.00 | 2.30 | 6.64 | 38.7 | | 6 | R2 | 192 | 4.1 | 0.874 | 33.3 | LOS D | 9.7 | 70.4 | 1.00 | 2.30 | 6.64 | 38.6 | | Approa | ch | 675 | 4.1 | 0.874 | 33.4 | LOS D | 9.7 | 70.4 | 1.00 | 2.30 | 6.64 | 38.7 | | North: I | Lillium Ave | | | | | | | | | | | | | 7 | L2 | 76 | 4.1 | 0.685 | 31.3 | LOS D | 4.4 | 31.9 | 1.00 | 1.66 | 3.84 | 39.8 | | 9 | R2 | 214 | 4.1 | 0.685 | 30.7 | LOS D | 4.4 | 31.9 | 1.00 | 1.66 | 3.84 | 39.5 | | Approa | ch | 289 | 4.1 | 0.685 | 30.9 | LOS D | 4.4 | 31.9 | 1.00 | 1.66 | 3.84 | 39.6 | | West: 2 | Zinia Drive | | | | | | | | | | | | | 10 | L2 | 571 | 4.1 | 1.473 | 242.7 | LOSF | 66.1 | 478.7 | 1.00 | 6.93 | 26.72 | 12.0 | | 11 | T1 | 301 | 4.1 | 1.473 | 242.4 | LOSF | 66.1 | 478.7 | 1.00 | 6.93 | 26.72 | 12.0 | | Approa | ch | 872 | 4.1 | 1.473 | 242.6 | LOS F | 66.1 | 478.7 | 1.00 | 6.93 | 26.72 | 12.0 | | All Veh | icles | 1836 | 4.1 | 1.473 | 132.4 | LOSF | 66.1 | 478.7 | 1.00 | 4.40 | 15.74 | 18.9 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. #### MOVEMENT SUMMARY Site: 1 [Lillium Ave and Zinia Drive - Intersection 1 - Midday Peak] Lillium Ave and Zinia Drive - Intersection 1 Site Category: (None) Stop (All-Way) | Mov | Turn | Demand | Flows | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |----------|-------------|--------|-------|-------|---------|----------|----------|----------|--------|-----------|-----------|---------| | ID | | Total | HV | Satn | Delay | Service | Vehicles | Distance | Queued | Stop Rate | Cycles | Speed | | | | veh/h | % | v/c | sec | | veh | m | | | | km/t | | East: Z | inia Drive | | | | | | | | | | | | | 5 | T1 | 135 | 4.1 | 0.304 | 14.6 | LOS B | 1.1 | 8.3 | 0.82 | 1.34 | 2.25 | 48.2 | | 6 | R2 | 45 | 4.1 | 0.304 | 14.3 | LOS B | 1.1 | 8.3 | 0.82 | 1.34 | 2.25 | 48.0 | | Approa | ch | 180 | 4.1 | 0.304 | 14.5 | LOS B | 1.1 | 8.3 | 0.82 | 1.34 | 2.25 | 48.2 | | North: I | Lillium Ave | | | | | | | | | | | | | 7 | L2 | 60 | 4.1 | 0.403 | 16.4 | LOSC | 1.7 | 12.2 | 0.85 | 1.38 | 2.50 | 47.4 | | 9 | R2 | 177 | 4.1 | 0.403 | 15.8 | LOSC | 1.7 | 12.2 | 0.85 | 1.38 | 2.50 | 47.0 | | Approa | ch | 237 | 4.1 | 0.403 | 15.9 | LOS C | 1.7 | 12.2 | 0.85 | 1.38 | 2.50 | 47.1 | | West: 2 | Zinia Drive | | | | | | | | | | | | | 10 | L2 | 162 | 4.1 | 0.657 | 27.6 | LOS D | 4.0 | 29.2 | 0.98 | 1.62 | 3.66 | 41.5 | | 11 | T1 | 143 | 4.1 | 0.657 | 27.3 | LOS D | 4.0 | 29.2 | 0.98 | 1.62 | 3.66 | 41.4 | | Approa | ch | 305 | 4.1 | 0.657 | 27.5 | LOS D | 4.0 | 29.2 | 0.98 | 1.62 | 3.66 | 41.5 | | All Veh | icles | 722 | 4.1 | 0.657 | 20.5 | LOSC | 4.0 | 29.2 | 0.90 | 1.47 | 2.93 | 44.8 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D). Site: 1 [Lillium Ave and Zinia Drive - Intersection 1 - PM Peak] Lillium Ave and Zinia Drive - Intersection 1 Site Category: (None) Stop (All-Way) | Mov | Turn | Demand | Flows | Deg. | Average | Level of | 95% Back (| of Queue | Prop. | Effective | Aver. No. | Average | |---------|-------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/h | | East: Z | inia Drive | | | | | | | | | | | | | 5 | T1 | 217 | 4.1 | 0.556 | 22.2 | LOSC | 2.9 | 20.9 | 0.94 | 1.50 | 3.10 | 44.0 | | 6 | R2 | 54 | 4.1 | 0.556 | 21.9 | LOSC | 2.9 | 20.9 | 0.94 | 1.50 | 3.10 | 43.8 | | Approa | ch | 271 | 4.1 | 0.556 | 22.1 | LOSC | 2.9 | 20.9 | 0.94 | 1.50 | 3.10 | 44.0 | | North: | Lillium Ave | | | | | | | | | | | | | 7 | L2 | 123 | 4.1 | 0.748 | 25.3 | LOS D | 5.6 | 40.7 | 0.95 | 1.82 | 4.49 | 42.6 | | 9 | R2 | 391 | 4.1 | 0.748 | 24.7 | LOSC | 5.6 | 40.7 | 0.95 | 1.82 | 4.49 | 42.2 | | Approa | ch | 514 | 4.1 | 0.748 | 24.8 | LOS C | 5.6 | 40.7 | 0.95 | 1.82 | 4.49 | 42.3 | | West: 2 | Zinia Drive | | | | | | | | | | | | | 10 | L2 | 173 | 4.1 | 1.023 | 89.3 | LOSF | 14.2 | 102.7 | 1.00 | 2.66 | 8.18 | 24.4 | | 11 | T1 | 197 | 4.1 | 1.023 | 89.0 | LOS F | 14.2 | 102.7 | 1.00 | 2.66 | 8.18 | 24.3 | | Approa | ch | 370 | 4.1 | 1.023 | 89.2 | LOSF | 14.2 | 102.7 | 1.00 | 2.66 | 8.18 | 24.4 | | All Veh | icles | 1154 | 4.1 | 1.023 | 44.8 | LOSE | 14.2 | 102.7 | 0.97 | 2.01 | 5.35 | 34.5 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. #### MOVEMENT SUMMARY Marlboro Drive and Lillium Ave/South Road - Intersection 2 Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 150 seconds (Site Practical Cycle Time) Variable Sequence Analysis applied. The results are given for the selected output sequence. | Mov | Turn | Demand | Flows | Deg | Average | Level of | 95% Back | of Queue | Ргор. | Effective | Aver No. | Average | |---------|----------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/l | | South: | Lillium Ave | 0.245048.002 | | 0.0000 | 550,000 | | | 25030 | | | | 23,000,000 | | 1 | L2 | 111 | 3.4 | 1.285 | 201.8 | LOS F | 84.1 | 606.1 | 1.00 | 1.51 | 1.84 | 13.5 | | 2 | T1 | 620 | 3.4 | 1.285 | 196.8 | LOSF | 84.1 | 606.1 | 1.00 | 1.49 | 1.85 | 13.5 | | 3 | R2 | 162 | 3.4 | 1.285 | 206.5 | LOS F | 31.3 | 225.3 | 1.00 | 1.34 | 1.91 | 13.0 | | Approa | ach | 893 | 3.4 | 1.285 | 199.2 | LOS F | 84.1 | 606.1 | 1.00 | 1.46 | 1.86 | 13.4 | | East: N | Marlboro Drive | 3 | | | | | | | | | | | | 4 | L2 | 77 | 3.4 | 0.086 | 26.6 | LOSC | 2.9 | 20.9 | 0.56 | 0.70 | 0.56 | 40. | | 5 | T1 | 646 | 3.4 | 0.343 | 24.4 | LOSC | 14.1 | 101.7 | 0.65 | 0.57 | 0.65 | 42.5 | | 6 | R2 | 1241 | 3.4 | 1.275 | 198.1 | LOS F | 82.6 | 594.9 | 1.00 | 1.26 | 1.84 | 13. | | Approa | ach | 1964 | 3.4 | 1.275 | 134.3 | LOS F | 82.6 | 594.9 | 0.87 | 1.01 | 1.40 | 18. | | North: | South Road | | | | | | | | | | | | | 7 | L2 | 739 | 3.4 | 0.549 | 12.7 | LOS B | 19.1 | 137.7 | 0.46 | 0.73 | 0.49 | 49. | | 8 | T1 | 153 | 3.4 | 0.523 | 63.7 | LOSE | 10.4 | 75.1 | 0.97 | 0.79 | 0.97 | 29. | | 9 | R2 | 36 | 3.4 | 0.496 | 87.1 | LOS F | 2.8 | 20.0 | 1.00 | 0.73 | 1.00 | 24. | | Approa | ich | 928 | 3.4 | 0.549 | 24.0 | LOS C | 19.1 | 137.7 | 0.57 | 0.74 | 0.59 | 42. | | West: I | Marlboro Driv | e | | | | | | | | | | | | 10 | L2 | 106 | 3.4 | 1.047 | 71.3 | LOS E | 20.8 | 149.6 | 1.00 | 0.98 | 1.50 | 19. | | 11 | T1 | 353 | 3.4 | 1.047 | 95.9 | LOSF | 20.8 | 149.6 | 1.00 | 1.06 | 1.51 | 19. | | 12 | R2 | 22 | 3.4 | 0.303 | 85.9 | LOSF | 1.7 | 12.0 | 1.00 | 0.71 | 1.00 | 24. | | Approa | ach | 481 | 3.4 | 1.047 | 90.0 | LOS F | 20.8 | 149.6 | 1.00 | 1.03 | 1.49 | 19. | | All Veh | icles | 4266 | 3.4 | 1.285 | 118.9 | LOS F | 84.1 | 606.1 | 0.85 | 1.05 | 1.33 | 19. | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). # Site: 2 [Marlboro Drive and Lillium Ave/South Road - Intersection 2 - PM Peak] Marlboro Drive and Lillium Ave/South Road - Intersection 2 Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 80 seconds (Site Practical Cycle Time) Variable Sequence Analysis applied. The results are given for the selected output sequence. | Mov | Tum | Demand | Flows | Deg | Average | Level of | 95% Back (| of Queue | Prop. | Effective | Aver No. | Average | |---------|----------------|----------------|---------|-------------|--------------|----------|--------------|---------------|--------|-----------|----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/h | | South: | Lillium Ave | | | | | | | | | | | | | 1 | L2 | 18 | 3.4 | 0.506 | 40.7 | LOS D | 5.4 | 38.9 | 0.97 | 0.78 | 0.97 | 37.2 | | 2 | T1 | 126 | 3.4 | 0.506 | 35,1 | LOS D | 5.4 | 38.9 | 0.97 | 0.78 | 0.97 | 37.9 | | 3 | R2 | 102 | 3.4 | 0.750 | 50.0 | LOS D | 4.4 | 31.6 |
1.00 | 0.87 | 1.26 | 32.8 | | Approa | ach | 246 | 3.4 | 0.750 | 41.7 | LOS D | 5.4 | 38.9 | 0.98 | 0.81 | 1.09 | 35.6 | | East: N | Marlboro Drive | | | | | | | | | | | | | 4 | L2 | 121 | 3.4 | 0.198 | 25.9 | LOS C | 3.4 | 24.3 | 0.75 | 0.75 | 0.75 | 41.2 | | 5 | T1 | 512 | 3.4 | 0.398 | 22.0 | LOS C | 7.7 | 55.6 | 0.81 | 0.68 | 0.81 | 44.1 | | 6 | R2 | 853 | 3.4 | 0.884 | 45.5 | LOS D | 19.0 | 136.9 | 0.99 | 0.99 | 1.29 | 33.9 | | Approa | ach | 1486 | 3.4 | 0.884 | 35.8 | LOS D | 19.0 | 136.9 | 0.91 | 0.86 | 1.08 | 37.4 | | North: | South Road | | | | | | | | | | | | | 7 | L2 | 1117 | 3.4 | 0.791 | 8.8 | LOSA | 16.1 | 115.9 | 0.63 | 0.79 | 0.65 | 51.6 | | 8 | T1 | 346 | 3.4 | 0.853 | 40.3 | LOS D | 15.1 | 108.6 | 1.00 | 1.00 | 1.26 | 36.3 | | 9 | R2 | 119 | 3.4 | 0.477 | 41.6 | LOS D | 4.5 | 32.4 | 0.97 | 0.78 | 0.97 | 35.2 | | Appro | ach | 1582 | 3.4 | 0.853 | 18.2 | LOS B | 16.1 | 115.9 | 0.73 | 0.83 | 0.80 | 45.7 | | West: | Marlboro Driv | e | | | | | | | | | | | | 10 | L2 | 21 | 3.4 | 0.099 | 22.7 | LOS C | 0.9 | 6.2 | 0.84 | 0.67 | 0.84 | 44.5 | | 11 | T1 | 38 | 3.4 | 0.099 | 27.8 | LOSC | 0.9 | 6.2 | 0.89 | 0.66 | 0.89 | 40.7 | | 12 | R2 | 2 | 3.4 | 0.015 | 43.8 | LOS D | 0.1 | 0.5 | 0.94 | 0.61 | 0.94 | 34.3 | | Appro | ach | 61 | 3.4 | 0.099 | 26.6 | LOS C | 0.9 | 6.2 | 0.87 | 0.66 | 0.87 | 41.6 | | All Veh | nicles | 3375 | 3.4 | 0.884 | 27.8 | LOS C | 19.0 | 136.9 | 0.83 | 0.84 | 0.95 | 40.8 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. #### MOVEMENT SUMMARY #### Site: 2 [Marlboro Drive and Lillium Ave/South Road - Intersection 2 - Midday Peak] Marlboro Drive and Lillium Ave/South Road - Intersection 2 Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 80 seconds (Site Practical Cycle Time) Variable Sequence Analysis applied. The results are given for the selected output sequence. | Mov | Tum | Demand | Flows | Deg | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver No. | Average | |---------|---------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/h | | South: | Lillium Ave | | | | | | | | | | | | | 1 | L2 | 42 | 3.4 | 0.449 | 36.8 | LOS D | 6.0 | 43.0 | 0.93 | 0.76 | 0.93 | 38.4 | | 2 | T1 | 127 | 3.4 | 0.449 | 31.2 | LOS C | 6.0 | 43.0 | 0.93 | 0.76 | 0.93 | 39.2 | | 3 | R2 | 91 | 3.4 | 0.669 | 48.7 | LOS D | 3.8 | 27.6 | 1.00 | 0.83 | 1.15 | 33.2 | | Approa | ich | 260 | 3.4 | 0.669 | 38.2 | LOS D | 6.0 | 43.0 | 0.95 | 0.79 | 1.01 | 36.7 | | East: N | Marlboro Driv | e | | | | | | | | | | | | 4 | L2 | 114 | 3.4 | 0.180 | 25.1 | LOSC | 3.1 | 22.3 | 0.73 | 0.74 | 0.73 | 41.6 | | 5 | T1 | 803 | 3.4 | 0.601 | 23.3 | LOSC | 13.1 | 94.0 | 0.88 | 0.76 | 0.88 | 43.4 | | 6 | R2 | 648 | 3.4 | 0.841 | 45.3 | LOS D | 14.0 | 100.7 | 1.00 | 0.95 | 1.25 | 34.0 | | Approa | ich | 1565 | 3.4 | 0.841 | 32.5 | LOS C | 14.0 | 100.7 | 0.92 | 0.84 | 1.02 | 38.8 | | North: | South Road | | | | | | | | | | | | | 7 | L2 | 598 | 3.4 | 0.528 | 12.4 | LOS B | 10.9 | 78.8 | 0.60 | 0.76 | 0.62 | 49.2 | | 8 | T1 | 98 | 3.4 | 0.257 | 29.7 | LOSC | 3.3 | 23.8 | 0.88 | 0.69 | 0.88 | 40.5 | | 9 | R2 | 58 | 3.4 | 0.427 | 46.7 | LOS D | 2.3 | 16.8 | 0.99 | 0.75 | 0.99 | 33.5 | | Approa | ich | 754 | 3.4 | 0.528 | 17.3 | LOS B | 10.9 | 78.8 | 0.67 | 0.75 | 0.68 | 46.2 | | West: I | Marlboro Driv | re | | | | | | | | | | | | 10 | L2 | 92 | 3.4 | 0.866 | 49.4 | LOS D | 15.9 | 114.8 | 1.00 | 1.07 | 1.69 | 34.2 | | 11 | T1 | 631 | 3.4 | 0.866 | 42.4 | LOS D | 15.9 | 114.8 | 1.00 | 1.04 | 1.46 | 35.2 | | 12 | R2 | 63 | 3.4 | 0.463 | 46.9 | LOS D | 2.5 | 18.4 | 1.00 | 0.75 | 1.00 | 33.3 | | Approa | ich | 786 | 3.4 | 0.866 | 43.6 | LOS D | 15.9 | 114.8 | 1.00 | 1.02 | 1.45 | 34.9 | | All Veh | icles | 3365 | 3.4 | 0.866 | 32.2 | LOS C | 15.9 | 114.8 | 0.88 | 0.86 | 1.04 | 39.0 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). Site: 3 [South Road and Impala Road - Intersection 3 - AM Peak] South Road and Impala Road - Intersection 3 Site Category: (None) Stop (Two-Way) | Mov | Tum | Demand | Flows | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|-------------|--------|-------|--------|---------|---|----------|----------|--------|-----------|-----------|---------| | ID | | Total | HV | Satn | Delay | Service | Vehicles | Distance | Queued | Stop Rate | Cycles | Speed | | | | veh/h | % | v/c | sec | *************************************** | veh | m | | | | km/t | | South | East: South | Road | | | | | | | | | | | | 21a | L1 | 1799 | 2.2 | 0.491 | 4.7 | LOSA | 0.0 | 0.0 | 0.00 | 0.55 | 0.00 | 54.0 | | 23 | R2 | 47 | 2.2 | 0.491 | 5.6 | LOSA | 0.0 | 0.0 | 0.00 | 0.56 | 0.00 | 53.9 | | Approa | ach | 1846 | 2.2 | 0.491 | 4.7 | NA | 0.0 | 0.0 | 0.00 | 0.55 | 0.00 | 54.0 | | NorthE | ast: Impala | Road | | | | | | | | | | | | 24 | L2 | 55 | 2.2 | 33.394 | 14662.5 | LOSF | 148.7 | 1060.4 | 1.00 | 1.31 | 2.30 | 0.2 | | 26a | R1 | 200 | 2.2 | 33.394 | 14675.5 | LOSF | 148.7 | 1060.4 | 1.00 | 1.31 | 2.30 | 0.2 | | Approa | ach | 255 | 2.2 | 33.394 | 14672.7 | LOSF | 148.7 | 1060.4 | 1.00 | 1.31 | 2.30 | 0.2 | | West: | South Road | | | | | | | | | | | | | 10a | L1 | 141 | 2.2 | 0.309 | 5.5 | LOSA | 1.8 | 12.7 | 0.17 | 0.53 | 0.17 | 53.1 | | 12a | R1 | 902 | 2.2 | 0.309 | 4.8 | LOSA | 1.8 | 13.2 | 0.17 | 0.52 | 0.17 | 53.7 | | Approa | ach | 1043 | 2.2 | 0.309 | 4.9 | NA | 1.8 | 13.2 | 0.17 | 0.52 | 0.17 | 53.6 | | All Veh | nicles | 3144 | 2.2 | 33.394 | 1194.4 | NA | 148.7 | 1060.4 | 0.14 | 0.60 | 0.24 | 2.8 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Minor Road Approach LOS values are based on average delay for all vehicle movements. NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. #### MOVEMENT SUMMARY ## 🥮 Site: 3 [South Road and Impala Road - Intersection 3 - Midday Peak] South Road and Impala Road - Intersection 3 Site Category: (None) Stop (Two-Way) | Mov | Turn | Demand | Flows | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|-------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/t | | SouthE | East: South | Road | | | | | | | | | | | | 21a | L1 | 759 | 2.2 | 0.212 | 4.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.56 | 0.00 | 54.1 | | 23 | R2 | 40 | 2.2 | 0.212 | 5.5 | LOSA | 0.0 | 0.0 | 0.00 | 0.56 | 0.00 | 53.9 | | Approa | ach | 799 | 2.2 | 0.212 | 4.7 | NA | 0.0 | 0.0 | 0.00 | 0.56 | 0.00 | 54.1 | | NorthE | ast: Impala | Road | | | | | | | | | | | | 24 | L2 | 35 | 2.2 | 1.533 | 291.9 | LOS F | 19.7 | 140.1 | 1.00 | 2.08 | 4.83 | 9.1 | | 26a | R1 | 89 | 2.2 | 1.533 | 335.5 | LOS F | 19.7 | 140.1 | 1.00 | 2.08 | 4.83 | 9.0 | | Approa | ach | 124 | 2.2 | 1.533 | 323.2 | LOSF | 19.7 | 140.1 | 1.00 | 2.08 | 4.83 | 9.1 | | West: | South Road | | | | | | | | | | | | | 10a | L1 | 115 | 2.2 | 0.250 | 5.5 | LOSA | 1.4 | 9.7 | 0.14 | 0.53 | 0.14 | 53.2 | | 12a | R1 | 733 | 2.2 | 0.250 | 4.7 | LOSA | 1.4 | 10.0 | 0.14 | 0.52 | 0.14 | 53.8 | | Approa | ach | 848 | 2.2 | 0.250 | 4.8 | NA | 1.4 | 10.0 | 0.14 | 0.52 | 0.14 | 53.7 | | All Veh | nicles | 1771 | 2.2 | 1.533 | 27.1 | NA | 19.7 | 140.1 | 0.14 | 0.65 | 0.41 | 40.0 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Minor Road Approach LOS values are based on average delay for all vehicle movements. NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). #### Site: 3 [South Road and Impala Road - Intersection 3 - PM Peak] South Road and Impala Road - Intersection 3 Site Category: (None) Stop (Two-Way) | Mov | Tum | Demand | Flows | Dea. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|-------------|----------------|---------|-------------|--------------|----------|-----------------|---------------
--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/t | | SouthE | East: South | Road | | | | | | | | | | | | 21a | L1 | 1037 | 2.2 | 0.289 | 4.7 | LOS A | 0.0 | 0.0 | 0.00 | 0.56 | 0.00 | 54.1 | | 23 | R2 | 50 | 2.2 | 0.289 | 5.6 | LOSA | 0.0 | 0.0 | 0.00 | 0.56 | 0.00 | 53.9 | | Approa | ach | 1087 | 2.2 | 0.289 | 4.7 | NA | 0.0 | 0.0 | 0.00 | 0.56 | 0.00 | 54.1 | | NorthE | ast: Impala | Road | | | | | | | | | | | | 24 | L2 | 56 | 2.2 | 12.759 | 5393.2 | LOS F | 65.3 | 466.0 | 1.00 | 1.41 | 2.69 | 0.6 | | 26a | R1 | 76 | 2.2 | 12.759 | 5428.8 | LOSF | 65.3 | 466.0 | 1.00 | 1.41 | 2.69 | 0.6 | | Approa | ich | 132 | 2.2 | 12.759 | 5413.7 | LOS F | 65.3 | 466.0 | 1.00 | 1.41 | 2.69 | 0.6 | | West: | South Road | | | | | | | | | | | | | 10a | L1 | 252 | 2.2 | 0.560 | 5.7 | LOSA | 4.5 | 32.4 | 0.24 | 0.52 | 0.24 | 52.9 | | 12a | R1 | 1631 | 2.2 | 0.560 | 4.9 | LOSA | 4.7 | 33.3 | 0.24 | 0.51 | 0.24 | 53.5 | | Approa | ach | 1883 | 2.2 | 0.560 | 5.0 | NA | 4.7 | 33.3 | 0.24 | 0.51 | 0.24 | 53.4 | | All Veh | icles | 3102 | 2.2 | 12.759 | 235.1 | NA | 65.3 | 466.0 | 0.19 | 0.57 | 0.26 | 11.8 | Site Level of Service (LOS) Method: Delay (SIDRA), Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Minor Road Approach LOS values are based on average delay for all vehicle movements. NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. #### MOVEMENT SUMMARY ### Site: 4 [Western Service Road and Wendy Road - Intersection 4 - AM Peak] Western Service Road and Wendy Road - Intersection 4 Site Category: (None) Stop (Two-Way) | Mov | Turn | Demand | Flows | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|------------|-------------|-------|-------|---------|----------|----------|----------|--------|-----------|-----------|---------| | ID | | Total | HV | Satn | Delay | Service | Vehicles | Distance | Queued | Stop Rate | Cycles | Speed | | | | veh/h | % | v/c | sec | | veh | m | | | | km/h | | South: | Western Se | ervice Road | | | | | | | | | | | | 1 | L2 | 89 | 2.3 | 0.330 | 5.6 | LOSA | 0.0 | 0.0 | 0.00 | 0.08 | 0.00 | 57.5 | | 2 | T1 | 541 | 2.3 | 0.330 | 0.0 | LOSA | 0.0 | 0.0 | 0.00 | 0.08 | 0.00 | 59.2 | | Approa | ach | 630 | 2.3 | 0.330 | 8.0 | NA | 0.0 | 0.0 | 0.00 | 0.08 | 0.00 | 58.9 | | North: | Western Se | rvice Road | | | | | | | | | | | | 8 | T1 | 414 | 2.3 | 0.243 | 0.4 | LOS A | 0.4 | 2.7 | 0.11 | 0.04 | 0.11 | 59.1 | | 9 | R2 | 24 | 2.3 | 0.243 | 9.4 | LOSA | 0.4 | 2.7 | 0.11 | 0.04 | 0.11 | 56.8 | | Approa | ach | 438 | 2.3 | 0.243 | 0.9 | NA | 0.4 | 2.7 | 0.11 | 0.04 | 0.11 | 59.0 | | West: | Wendy Roa | | | | | | | | | | | | | 10 | L2 | 67 | 2.3 | 0.251 | 11.8 | LOS B | 0.9 | 6.6 | 0.66 | 1.02 | 0.73 | 48.0 | | 12 | R2 | 50 | 2.3 | 0.251 | 18.9 | LOS C | 0.9 | 6.6 | 0.66 | 1.02 | 0.73 | 47.5 | | Approa | ach | 117 | 2.3 | 0.251 | 14.8 | LOS B | 0.9 | 6.6 | 0.66 | 1.02 | 0.73 | 47.8 | | All Veh | nicles | 1185 | 2.3 | 0.330 | 2.2 | NA | 0.9 | 6.6 | 0.10 | 0.16 | 0.11 | 57.6 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Minor Road Approach LOS values are based on average delay for all vehicle movements. NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D). ### Site: 4 [Western Service Road and Wendy Road - Intersection 4 - Midday Peak] Western Service Road and Wendy Road - Intersection 4 Site Category: (None) Stop (Two-Way) | Mov | Tum | Demand | Flows | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/t | | South: | Western Se | ervice Road | 1000 | | | | | 1,700 | | | | 7,000 | | 1 | L2 | 28 | 2.3 | 0.108 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.08 | 0.00 | 57.5 | | 2 | T1 | 178 | 2.3 | 0.108 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.08 | 0.00 | 59.2 | | Approa | ach | 206 | 2.3 | 0.108 | 0.8 | NA | 0.0 | 0.0 | 0.00 | 0.08 | 0.00 | 59.0 | | North: | Western Se | rvice Road | | | | | | | | | | | | 8 | T1 | 199 | 2.3 | 0.136 | 0.2 | LOSA | 0.3 | 2.4 | 0.14 | 0.11 | 0.14 | 58.4 | | 9 | R2 | 46 | 2.3 | 0.136 | 6.2 | LOSA | 0.3 | 2.4 | 0.14 | 0.11 | 0.14 | 56.2 | | Approa | ach | 245 | 2.3 | 0.136 | 1.3 | NA | 0.3 | 2.4 | 0.14 | 0.11 | 0.14 | 58.0 | | West: | Wendy Roa | d | | | | | | | | | | | | 10 | L2 | 33 | 2.3 | 0.075 | 8.8 | LOSA | 0.3 | 1.9 | 0.34 | 0.90 | 0.34 | 51.2 | | 12 | R2 | 34 | 2.3 | 0.075 | 10.0 | LOS A | 0.3 | 1.9 | 0.34 | 0.90 | 0.34 | 50.7 | | Approa | ach | 67 | 2.3 | 0.075 | 9.4 | LOS A | 0.3 | 1.9 | 0.34 | 0.90 | 0.34 | 50.9 | | All Veh | nicles | 518 | 2.3 | 0.136 | 2.2 | NA | 0.3 | 2.4 | 0.11 | 0.20 | 0.11 | 57.3 | Site Level of Service (LOS) Method: Delay (SIDRA), Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Minor Road Approach LOS values are based on average delay for all vehicle movements. NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. #### MOVEMENT SUMMARY # Site: 4 [Western Service Road and Wendy Road - Intersection 4 - PM Peak] Western Service Road and Wendy Road - Intersection 4 Site Category: (None) Stop (Two-Way) | Mov | Turn | Demand | Flows | Deq. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/t | | South: | Western Se | ervice Road | | | | | | | | | | | | 1 | L2 | 52 | 2.3 | 0.151 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.11 | 0.00 | 57.3 | | 2 | T1 | 237 | 1.3 | 0.151 | 0.0 | LOSA | 0.0 | 0.0 | 0.00 | 0.11 | 0.00 | 59.0 | | Appro | ach | 289 | 1.5 | 0.151 | 1.0 | NA | 0.0 | 0.0 | 0.00 | 0.11 | 0.00 | 58.7 | | North: | Western Se | rvice Road | | | | | | | | | | | | 8 | T1 | 429 | 2.3 | 0.272 | 0.3 | LOSA | 0.6 | 4.3 | 0.14 | 0.08 | 0.14 | 58.7 | | 9 | R2 | 64 | 2.3 | 0.272 | 6.8 | LOSA | 0.6 | 4.3 | 0.14 | 0.08 | 0.14 | 56.4 | | Аррго | ach | 493 | 2.3 | 0.272 | 1.1 | NA | 0.6 | 4.3 | 0.14 | 0.08 | 0.14 | 58.4 | | West: | Wendy Roa | d | | | | | | | | | | | | 10 | L2 | 45 | 2.3 | 0.128 | 9.1 | LOSA | 0.4 | 3.2 | 0.43 | 0.93 | 0.43 | 50.0 | | 12 | R2 | 41 | 2.3 | 0.128 | 13.5 | LOS B | 0.4 | 3.2 | 0.43 | 0.93 | 0.43 | 49.6 | | Appro | ach | 86 | 2.3 | 0.128 | 11.2 | LOS B | 0.4 | 3.2 | 0.43 | 0.93 | 0.43 | 49.8 | | All Vel | nicles | 868 | 2.0 | 0.272 | 2.1 | NA | 0.6 | 4.3 | 0.12 | 0.17 | 0.12 | 57.5 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Minor Road Approach LOS values are based on average delay for all vehicle movements. NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). # Site: 5 [Western Service Road and Carnation Street - Intersection 5 - AM Peak] Western Service Road and Carnation Street - Intersection 5 Site Category: (None) Stop (Two-Way) | Mov | Turn | Demand | Flows | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|-------------|-------------|-------|-------|---------|----------|----------|----------|--------|-----------|-----------|---------| | ID | | Total | HV | Satn | Delay | Service | Vehicles | Distance | Queued | Stop Rate | Cycles | Speed | | | | veh/h | % | v/c | sec | | veh | m | | | | km/h | | South: | Western Se | ervice Road | | | | | | | | | | | | 1a | L1 | 51 | 0.9 | 0.354 | 5.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.04 | 0.00 | 57.5 | | 2 | T1 | 635 | 0.9 | 0.354 | 0.0 | LOSA | 0.0 | 0.0 | 0.00 | 0.04 | 0.00 | 59.5 | | Approa | ach | 686 | 0.9 | 0.354 | 0.4 | NA | 0.0 | 0.0 | 0.00 | 0.04 | 0.00 | 59.4 | | North: | Western Se | ervice Road | | | | | | | | | | | | 8 | T1 | 488 | 0.9 | 0.253 | 0.0 | LOS A | 0.0 | 0.1 | 0.00 | 0.00 | 0.00 | 60.0 | | 9b | R3 | - 1 | 0.9 | 0.253 | 10.7 | LOS B | 0.0
 0.1 | 0.00 | 0.00 | 0.00 | 57.9 | | Approa | ach | 489 | 0.9 | 0.253 | 0.0 | NA | 0.0 | 0.1 | 0.00 | 0.00 | 0.00 | 60.0 | | NorthV | Vest: Carna | tion Street | | | | | | | | | | | | 27b | L3 | 119 | 0.9 | 0.179 | 13.2 | LOS B | 0.7 | 4.8 | 0.59 | 1.00 | 0.59 | 49.4 | | 29a | R1 | 61 | 0.9 | 0.242 | 21.7 | LOS C | 0.8 | 5.5 | 0.83 | 1.03 | 0.91 | 44.0 | | Approa | ach | 180 | 0.9 | 0.242 | 16.1 | LOS C | 0.8 | 5.5 | 0.67 | 1.01 | 0.70 | 47.5 | | All Veh | nicles | 1355 | 0.9 | 0.354 | 2.4 | NA | 0.8 | 5.5 | 0.09 | 0.16 | 0.09 | 57.6 | Site Level of Service (LOS) Method: Delay (SIDRA), Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Minor Road Approach LOS values are based on average delay for all vehicle movements. NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. #### MOVEMENT SUMMARY Stop (Two-Way) # site: 5 [Western Service Road and Carnation Street - Intersection 5 - Midday Peak] Western Service Road and Carnation Street - Intersection 5 Site Category: (None) | Mov | Turn | Demand | Flows | Deg | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|-------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/h | | South: | Western Se | | /0 | - 10 | 300 | | , Ton | | | | | Killin | | 1a | L1 | 32 | 0.9 | 0.125 | 4.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.07 | 0.00 | 57.6 | | 2 | T1 | 209 | 0.9 | 0.125 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.07 | 0.00 | 59.4 | | Approa | nch | 241 | 0.9 | 0.125 | 0.6 | NA | 0.0 | 0.0 | 0.00 | 0.07 | 0.00 | 59.1 | | North: | Western Se | rvice Road | | | | | | | | | | | | 8 | T1 | 168 | 0.9 | 0.087 | 0.0 | LOS A | 0.0 | 0.1 | 0.01 | 0.00 | 0.01 | 59.9 | | 9b | R3 | 1 | 0.9 | 0.087 | 7.0 | LOS A | 0.0 | 0.1 | 0.01 | 0.00 | 0.01 | 57.9 | | Approa | ich | 169 | 0.9 | 0.087 | 0.0 | NA | 0.0 | 0.1 | 0.01 | 0.00 | 0.01 | 59.9 | | NorthV | Vest: Carna | tion Street | | | | | | | | | | | | 27b | L3 | 24 | 0.9 | 0.021 | 9.8 | LOS A | 0.1 | 0.6 | 0.31 | 0.85 | 0.31 | 51.3 | | 29a | R1 | 19 | 0.9 | 0.025 | 9.6 | LOS A | 0.1 | 0.6 | 0.40 | 0.93 | 0.40 | 50.9 | | Approa | ich | 43 | 0.9 | 0.025 | 9.7 | LOSA | 0.1 | 0.6 | 0.35 | 0.89 | 0.35 | 51.2 | | All Veh | icles | 453 | 0.9 | 0.125 | 1.3 | NA | 0.1 | 0.6 | 0.03 | 0.12 | 0.03 | 58.6 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Minor Road Approach LOS values are based on average delay for all vehicle movements. NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D). ## Site: 5 [Western Service Road and Carnation Street - Intersection 5 - PM Peak] Western Service Road and Carnation Street - Intersection 5 Site Category: (None) Stop (Two-Way) | Mov | Turn | Demand | Flows | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|-------------|----------------------|-------|-------|---------|----------|----------|----------|--------|-----------|-----------|---------| | ID | | Total | HV | Satn | Delay | Service | Vehicles | Distance | Queued | Stop Rate | Cycles | Speed | | South | Western Se | veh/h
ervice Road | % | v/c | sec | | veh | m | | | | km/ | | 1a | L1 | 53 | 0.9 | 0.156 | 5.0 | LOSA | 0.0 | 0.0 | 0.00 | 0.10 | 0.00 | 57. | | 2 | T1 | 249 | 0.9 | 0.156 | 0.0 | LOSA | 0.0 | 0.0 | 0.00 | 0.10 | 0.00 | 59. | | Approa | ich | 302 | 0.9 | 0.156 | 0.9 | NA | 0.0 | 0.0 | 0.00 | 0.10 | 0.00 | 58. | | North: | Western Se | rvice Road | | | | | | | | | | | | 8 | T1 | 501 | 0.9 | 0.304 | 0.2 | LOS A | 0.5 | 3.8 | 0.11 | 0.07 | 0.11 | 58. | | 9b | R3 | 54 | 0.9 | 0.304 | 7.7 | LOS A | 0.5 | 3.8 | 0.11 | 0.07 | 0.11 | 56. | | Approa | ich | 555 | 0.9 | 0.304 | 0.9 | NA | 0.5 | 3.8 | 0.11 | 0.07 | 0.11 | 58. | | NorthV | Vest: Carna | tion Street | | | | | | | | | | | | 27b | L3 | 20 | 0.9 | 0.018 | 10.0 | LOS A | 0.1 | 0.5 | 0.34 | 0.85 | 0.34 | 51. | | 29a | R1 | 26 | 0.9 | 0.062 | 14.0 | LOS B | 0.2 | 1.3 | 0.65 | 1.02 | 0.65 | 48.3 | | Approa | ich | 46 | 0.9 | 0.062 | 12.3 | LOS B | 0.2 | 1.3 | 0.51 | 0.95 | 0.51 | 49. | | All Veh | icles | 903 | 0.9 | 0.304 | 1.5 | NA | 0.5 | 3.8 | 0.10 | 0.12 | 0.10 | 58. | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Minor Road Approach LOS values are based on average delay for all vehicle movements. NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. #### MOVEMENT SUMMARY # Site: 6 [Western Service Road and Harrowdene Office Park - Intersection 6 - AM Peak] Western Service Road and Harrowdene Office Park - Intersection 6 Site Category: (None) Roundabout | Mov | Turn | Demand | Flows | Deg | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|------------|-------------|--------|-------|---------|----------|----------|----------|-----------------|---|-----------|---------| | ID | | Total | HV | Satn | Delay | Service | Vehicles | Distance | Queued | Stop Rate | Cycles | Speed | | | | veh/h | % | v/c | sec | | veh | m | That facilities | 100000000000000000000000000000000000000 | | km/h | | South: | Western Se | ervice Road | | | | | | | | | | | | 1 | L2 | 211 | 2.0 | 0.240 | 5.9 | LOS A | 1.3 | 8.9 | 0.51 | 0.61 | 0.51 | 54.5 | | 2 | T1 | 559 | 2.0 | 0.457 | 5.4 | LOSA | 3.1 | 21.9 | 0.56 | 0.53 | 0.56 | 55.4 | | Approa | ach | 769 | 2.0 | 0.457 | 5.6 | LOSA | 3.1 | 21.9 | 0.55 | 0.55 | 0.55 | 55.1 | | North: | Western Se | rvice Road | | | | | | | | | | | | 8 | T1 | 542 | 2.0 | 0.511 | 3.6 | LOS A | 5.1 | 36.0 | 0.04 | 0.48 | 0.04 | 56.5 | | 9 | R2 | 317 | 2.0 | 0.511 | 9.2 | LOS A | 5.1 | 36.0 | 0.04 | 0.48 | 0.04 | 56.9 | | Approa | ach | 859 | 2.0 | 0.511 | 5.6 | LOS A | 5.1 | 36.0 | 0.04 | 0.48 | 0.04 | 56.7 | | West: | Harrowdene | Office Park | Access | | | | | | | | | | | 10 | L2 | 5 | 2.0 | 0.005 | 5.8 | LOS A | 0.0 | 0.2 | 0.61 | 0.51 | 0.61 | 54.1 | | 12 | R2 | 2 | 2.0 | 0.003 | 12.4 | LOS B | 0.0 | 0.1 | 0.62 | 0.60 | 0.62 | 51.9 | | Approa | ach | 7 | 2.0 | 0.005 | 7.7 | LOSA | 0.0 | 0.2 | 0.62 | 0.53 | 0.62 | 53.5 | | All Veh | nicles | 1635 | 2.0 | 0.511 | 5.6 | LOSA | 5.1 | 36.0 | 0.28 | 0.51 | 0.28 | 55.9 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS. Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. Roundabout Capacity Model: SIDRA Standard. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). Site: 6 [Western Service Road and Harrowdene Office Park - Intersection 6 - Midday Peak] Western Service Road and Harrowdene Office Park - Intersection 6 Site Category: (None) Roundabout | Mov | Turn | Demand | Flows | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Saln
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/h | | South: | Western Se | | | | | | | | | | | | | 1 | L2 | 23 | 2.0 | 0.025 | 4.2 | LOS A | 0.1 | 0.8 | 0.25 | 0.43 | 0.25 | 55.5 | | 2 | T1 | 201 | 2.0 | 0.139 | 3.9 | LOS A | 0.7 | 5.0 | 0.22 | 0.37 | 0.22 | 57.2 | | Appro | ach | 224 | 2.0 | 0.139 | 3.9 | LOSA | 0.7 | 5.0 | 0.23 | 0.37 | 0.23 | 57.1 | | North: | Western Se | rvice Road | | | | | | | | | | | | 8 | T1 | 241 | 2.0 | 0.224 | 3.7 | LOSA | 1.3 | 9.6 | 0.13 | 0.44 | 0.13 | 56.6 | | 9 | R2 | 88 | 2.0 | 0.224 | 9.3 | LOSA | 1.3 | 9.6 | 0.13 | 0.44 | 0.13 | 56.9 | | Appro | ach | 329 | 2.0 | 0.224 | 5.2 | LOSA | 1.3 | 9.6 | 0.13 | 0.44 | 0.13 | 56.7 | | West: | Harrowdene | Office Park | Access | | | | | | | | | | | 10 | L2 | 118 | 2.0 | 0.091 | 4.4 | LOSA | 0.5 | 3.3 | 0.35 | 0.47 | 0.35 | 55.1 | | 12 | R2 | 25 | 2.0 | 0.031 | 10.7 | LOS B | 0.1 | 1.0 | 0.39 | 0.62 | 0.39 | 52.9 | | Appro | ach | 143 | 2.0 | 0.091 | 5.5 | LOS A | 0.5 | 3.3 | 0.35 | 0.50 | 0.35 | 54.7 | | All Vel | nicles | 696 | 2.0 | 0.224 | 4.8 | LOSA | 1.3 | 9.6 | 0.21 | 0.43 | 0.21 | 56.4 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog
(Site tab). Roundabout LOS Method: SIDRA Roundabout LOS. Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. Roundabout Capacity Model: SIDRA Standard. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. ### MOVEMENT SUMMARY # Site: 6 [Western Service Road and Harrowdene Office Park - Intersection 6 - PM Peak] Western Service Road and Harrowdene Office Park - Intersection 6 Site Category: (None) Roundabout | Mov | Tum | Demand | Flows | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/h | | South: | Western Se | ervice Road | | | | | | | | | | | | 1 | L2 | 24 | 2.0 | 0.025 | 4.0 | LOS A | 0.1 | 0.8 | 0.21 | 0.42 | 0.21 | 55.7 | | 2 | T1 | 278 | 2.0 | 0.183 | 3.8 | LOSA | 1.0 | 7.1 | 0.19 | 0.35 | 0.19 | 57.4 | | Аррго | ach | 302 | 2.0 | 0.183 | 3.8 | LOSA | 1.0 | 7.1 | 0.19 | 0.36 | 0.19 | 57.3 | | North: | Western Se | rvice Road | | | | | | | | | | | | 8 | T1 | 402 | 2.0 | 0.332 | 3.8 | LOSA | 2.3 | 16.1 | 0.23 | 0.40 | 0.23 | 56.7 | | 9 | R2 | 60 | 2.0 | 0.332 | 9.5 | LOSA | 2.3 | 16.1 | 0.23 | 0.40 | 0.23 | 57.0 | | Appro | ach | 462 | 2.0 | 0.332 | 4.6 | LOS A | 2.3 | 16.1 | 0.23 | 0.40 | 0.23 | 56.7 | | West: | Harrowdene | Office Park | Access | | | | | | | | | | | 10 | L2 | 124 | 2.0 | 0.101 | 4.7 | LOSA | 0.5 | 3.7 | 0.41 | 0.51 | 0.41 | 54.9 | | 12 | R2 | 54 | 2.0 | 0.057 | 10.8 | LOS B | 0.3 | 1.9 | 0.43 | 0.64 | 0.43 | 52.7 | | Appro | ach | 178 | 2.0 | 0.101 | 6.5 | LOS A | 0.5 | 3.7 | 0.41 | 0.55 | 0.41 | 54.2 | | All Vel | nicles | 942 | 2.0 | 0.332 | 4.7 | LOSA | 2.3 | 16.1 | 0.26 | 0.42 | 0.26 | 56.4 | Site Level of Service (LOS) Method: Delay (SIDRA), Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS. Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. Roundabout Capacity Model: SIDRA Standard. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D). Site: 7 [Western Service Road and The woodlands Access - Intersection 7 - AM Peak] Western Service Road and The woodlands Access - Intersection 7 Site Category: (None) Roundabout | Mov | Turn | Demand | Flows | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|--------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/ | | South: | Western Se | ervice Road | | | | | | | | | | | | 1 | L2 | 187 | 2.0 | 0.503 | 5.8 | LOS A | 3.8 | 27.0 | 0.59 | 0.61 | 0.59 | 53. | | 2 | T1 | 391 | 2.0 | 0.503 | 6.0 | LOS A | 3.8 | 27.0 | 0.59 | 0.61 | 0.59 | 54. | | Approa | ich | 578 | 2.0 | 0.503 | 5.9 | LOS A | 3.8 | 27.0 | 0.59 | 0.61 | 0.59 | 53. | | North: | Western Se | rvice Road | | | | | | | | | | | | 8 | T1 | 722 | 2.0 | 0.618 | 4.4 | LOS A | 7.1 | 50.2 | 0.27 | 0.45 | 0.27 | 54. | | 9 | R2 | 259 | 2.0 | 0.618 | 9.0 | LOSA | 7.1 | 50.2 | 0.27 | 0.45 | 0.27 | 54. | | Approa | ach | 981 | 2.0 | 0.618 | 5.6 | LOS A | 7.1 | 50.2 | 0.27 | 0.45 | 0.27 | 54. | | West: | The woodla | nds Access | | | | | | | | | | | | 10 | L2 | 46 | 2.0 | 0.057 | 5.8 | LOSA | 0.3 | 2.4 | 0.53 | 0.60 | 0.53 | 52. | | 12 | R2 | 32 | 2.0 | 0.057 | 10.2 | LOS B | 0.3 | 2.4 | 0.52 | 0.61 | 0.52 | 53.3 | | Approa | ach | 78 | 2.0 | 0.057 | 7.6 | LOS A | 0.3 | 2.4 | 0.52 | 0.60 | 0.52 | 52. | | All Veh | icles | 1637 | 2.0 | 0.618 | 5.8 | LOSA | 7.1 | 50.2 | 0.39 | 0.52 | 0.39 | 54.3 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. Roundabout Capacity Model: SIDRA Standard. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. #### MOVEMENT SUMMARY # Site: 7 [Western Service Road and The woodlands Access - Intersection 7 - Midday Peak] Western Service Road and The woodlands Access - Intersection 7 Site Category: (None) Roundabout | Mov | Tum | Demand | Flows | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|---------------------|-------------|-------|-------|---------|----------|----------|----------|--------|-----------|-----------|---------| | ID | | Total | HV | Satn | Delay | Service | Vehicles | Distance | Queued | Stop Rate | Cycles | Speed | | 0 | 101-1 | veh/h | % | v/c | sec | | veh | m | | | | km/t | | South: | Service and Company | ervice Road | | | | | | | | | | | | 1 | L2 | 41 | 2.0 | 0.251 | 4.5 | LOSA | 1.5 | 10.4 | 0.30 | 0.44 | 0.30 | 54.1 | | 2 | T1 | 291 | 2.0 | 0.251 | 4.7 | LOS A | 1.5 | 10.4 | 0.30 | 0.44 | 0.30 | 55.4 | | Approa | ach | 332 | 2.0 | 0.251 | 4.7 | LOSA | 1.5 | 10.4 | 0.30 | 0.44 | 0.30 | 55.3 | | North: | Western Se | rvice Road | | | | | | | | | | | | 8 | T1 | 359 | 2.0 | 0.304 | 4.3 | LOS A | 2.1 | 14.9 | 0.16 | 0.46 | 0.16 | 55.3 | | 9 | R2 | 110 | 2.0 | 0.304 | 8.9 | LOS A | 2.1 | 14.9 | 0.16 | 0.46 | 0.16 | 55.2 | | Approa | ach | 469 | 2.0 | 0.304 | 5.3 | LOSA | 2.1 | 14.9 | 0.16 | 0.46 | 0.16 | 55.3 | | West: | The woodla | nds Access | | | | | | | | | | | | 10 | L2 | 107 | 2.0 | 0.092 | 5.3 | LOSA | 0.5 | 3.6 | 0.43 | 0.57 | 0.43 | 53.1 | | 12 | R2 | 30 | 2.0 | 0.092 | 9.8 | LOSA | 0.5 | 3.6 | 0.43 | 0.57 | 0.43 | 54.4 | | Approa | ach | 137 | 2.0 | 0.092 | 6.3 | LOSA | 0.5 | 3.6 | 0.43 | 0.57 | 0.43 | 53.4 | | All Veh | icles | 938 | 2.0 | 0.304 | 5.2 | LOSA | 2.1 | 14.9 | 0.25 | 0.47 | 0.25 | 55.0 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS. Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. Roundabout Capacity Model: SIDRA Standard. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). Site: 7 [Western Service Road and The woodlands Access - Intersection 7 - PM Peak] Western Service Road and The woodlands Access - Intersection 7 Site Category: (None) Roundabout | Mov | Turn | Demand | Flows | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/l | | South: | Western Se | ervice Road | | | | | | | | | | | | 1 | L2 | 32 | 2.0 | 0.216 | 4.1 | LOS A | 1.3 | 9.2 | 0.20 | 0.41 | 0.20 | 54.6 | | 2 | T1 | 279 | 2.0 | 0.216 | 4.4 | LOSA | 1.3 | 9.2 | 0.20 | 0.41 | 0.20 | 55.9 | | Appro | ach | 311 | 2.0 | 0.216 | 4.3 | LOS A | 1.3 | 9.2 | 0.20 | 0.41 | 0.20 | 55.8 | | North: | Western Se | rvice Road | | | | | | | | | | | | 8 | T1 | 295 | 2.0 | 0.273 | 4.9 | LOSA | 1.7 | 12.4 | 0.37 | 0.50 | 0.37 | 54.6 | | 9 | R2 | 51 | 2.0 | 0.273 | 9.5 | LOSA | 1.7 | 12.4 | 0.37 | 0.50 | 0.37 | 54.6 | | Appro | ach | 346 | 2.0 | 0.273 | 5.6 | LOSA | 1.7 | 12.4 | 0.37 | 0.50 | 0.37 | 54.6 | | West: | The woodla | nds Access | | | | | | | | | | | | 10 | L2 | 241 | 2.0 | 0.252 | 5.5 | LOSA | 1.5 | 10.8 | 0.45 | 0.61 | 0.45 | 52.6 | | 12 | R2 | 142 | 2.0 | 0.252 | 10.0 | LOSA | 1.5 | 10.8 | 0.46 | 0.62 | 0.46 | 53.7 | | Appro | ach | 383 | 2.0 | 0.252 | 7.1 | LOSA | 1.5 | 10.8 | 0.45 | 0.61 | 0.45 | 53.0 | | All Veh | nicles | 1040 | 2.0 | 0.273 | 5.8 | LOSA | 1.7 | 12.4 | 0.35 | 0.51 | 0.35 | 54.3 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS. Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. Roundabout Capacity Model: SIDRA Standard. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. #### MOVEMENT SUMMARY # Site: 8 [Woodlands Drive and Western Service Road - Intersection 8 - AM Peak] Woodlands Drive and Western Service Road - Intersection 8 Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 150 seconds (Site Practical Cycle Time) Variable Sequence Analysis applied. The results are given for the selected output sequence. | Mov | Turn | Demand | Flows | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|-------------|----------------|---------
-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/l | | South: | : Road West | ern Service F | Road | | | | | | | | | | | 1 | L2 | 115 | 1.4 | 1.126 | 147.8 | LOS F | 21.6 | 153.0 | 1.00 | 1.11 | 1.67 | 16.7 | | 2 | T1 | 9 | 1.4 | 1.126 | 142.3 | LOS F | 21.6 | 153.0 | 1.00 | 1.11 | 1.67 | 16.9 | | 3 | R2 | 345 | 1.4 | 1.126 | 146.7 | LOS F | 29.4 | 208.2 | 1.00 | 1.11 | 1.65 | 16.8 | | Appro | ach | 469 | 1.4 | 1.126 | 146.9 | LOS F | 29.4 | 208.2 | 1.00 | 1.11 | 1.65 | 16.8 | | East \ | Woodlands I | Orive | | | | | | | | | | | | 4 | L2 | 962 | 1.4 | 1.105 | 120.3 | LOS F | 105.0 | 744.1 | 1.00 | 1.12 | 1.47 | 19.6 | | 5 | T1 | 1248 | 1.4 | 0.736 | 35.5 | LOS D | 39.2 | 277.5 | 0.89 | 0.80 | 0.89 | 37.9 | | 6 | R2 | 28 | 1.4 | 0.736 | 43.1 | LOS D | 36.2 | 256.3 | 0.90 | 0.81 | 0.90 | 36.5 | | Appro | ach | 2238 | 1.4 | 1.105 | 72.0 | LOS E | 105.0 | 744.1 | 0.93 | 0.94 | 1.14 | 27.0 | | North: | Jessica CI | | | | | | | | | | | | | 7 | L2 | 13 | 1.4 | 0.228 | 68.7 | LOS E | 3.8 | 27.1 | 0.93 | 0.72 | 0.93 | 28.9 | | 8 | T1 | 45 | 1.4 | 0.228 | 63.1 | LOSE | 3.8 | 27.1 | 0.93 | 0.72 | 0.93 | 29.3 | | 9 | R2 | 14 | 1.4 | 0.190 | 85.0 | LOSF | 1.1 | 7.4 | 1.00 | 0.69 | 1.00 | 24.9 | | Appro | ach | 72 | 1.4 | 0.228 | 68.4 | LOS E | 3.8 | 27.1 | 0.95 | 0.72 | 0.95 | 28.2 | | West: | Woodlands | Drive | | | | | | | | | | | | 10 | L2 | 59 | 1.4 | 0.741 | 75.9 | LOS E | 13.8 | 97.6 | 1.00 | 0.87 | 1.07 | 27.1 | | 11 | T1 | 511 | 1.4 | 0.741 | 70.3 | LOS E | 14.0 | 99.0 | 1.00 | 0.87 | 1.07 | 27.8 | | 12 | R2 | 174 | 1.4 | 1.092 | 135.8 | LOS F | 17.9 | 126.9 | 1.00 | 1.06 | 1.62 | 17.8 | | Appro | ach | 744 | 1.4 | 1.092 | 86.0 | LOS F | 17.9 | 126.9 | 1.00 | 0.91 | 1.20 | 24.5 | | All Vel | hicles | 3523 | 1.4 | 1.126 | 84.9 | LOS F | 105.0 | 744.1 | 0.96 | 0.95 | 1.21 | 24.5 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D). #### Site: 8 [Woodlands Drive and Western Service Road - Intersection 8 - Midday Peak] Woodlands Drive and Western Service Road - Intersection 8 Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 90 seconds (Site Practical Cycle Time) Variable Sequence Analysis applied. The results are given for the selected output sequence. | Mov | Tum | Demand | | Deg | Average | Level of | 95% Back | | Prop. | Effective | Aver. No. | Average | |---------|-------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/t | | South: | Road West | ern Service F | Road | | | | | | | | | | | 1 | L2 | 92 | 1.4 | 0.884 | 58.0 | LOSE | 10.0 | 71.0 | 1.00 | 0.98 | 1.38 | 30.3 | | 2 | T1 | 6 | 1.4 | 0.884 | 52.4 | LOS D | 10.0 | 71.0 | 1.00 | 0.98 | 1.38 | 30.8 | | 3 | R2 | 442 | 1.4 | 0.884 | 54.4 | LOS D | 17.3 | 122.8 | 1.00 | 0.97 | 1.31 | 31.3 | | Appro | ach | 540 | 1.4 | 0.884 | 55.0 | LOS E | 17.3 | 122.8 | 1.00 | 0.97 | 1.33 | 31. | | East: \ | Woodlands [| Orive | | | | | | | | | | | | 4 | L2 | 476 | 1.4 | 0.896 | 50.8 | LOS D | 24.3 | 171.9 | 1.00 | 0.98 | 1.27 | 32.2 | | 5 | T1 | 687 | 1.4 | 0.686 | 32.2 | LOSC | 15.2 | 107.4 | 0.95 | 0.82 | 0.96 | 39.2 | | 6 | R2 | 20 | 1.4 | 0.686 | 39.2 | LOS D | 13.2 | 93.8 | 0.96 | 0.83 | 0.98 | 37.9 | | Appro | ach | 1183 | 1.4 | 0.896 | 39.8 | LOS D | 24.3 | 171.9 | 0.97 | 0.89 | 1.09 | 36.0 | | North: | Jessica CI | | | | | | | | | | | | | 7 | L2 | 27 | 1.4 | 0.122 | 40.6 | LOS D | 1.4 | 10.3 | 0.88 | 0.70 | 0.88 | 36.0 | | 8 | T1 | 11 | 1.4 | 0.122 | 35.0 | LOS D | 1.4 | 10.3 | 0.88 | 0.70 | 0.88 | 36.6 | | 9 | R2 | 18 | 1.4 | 0.147 | 50.9 | LOS D | 0.8 | 5.6 | 0.97 | 0.69 | 0.97 | 32.5 | | Appro | ach | 56 | 1.4 | 0.147 | 42.8 | LOS D | 1.4 | 10.3 | 0.91 | 0.70 | 0.91 | 34.9 | | West: | Woodlands | Drive | | | | | | | | | | | | 10 | L2 | 21 | 1.4 | 0.137 | 45.8 | LOS D | 1.2 | 8.2 | 0.93 | 0.70 | 0.93 | 34.1 | | 11 | T1 | 66 | 1.4 | 0.137 | 40.2 | LOS D | 1.2 | 8.5 | 0.93 | 0.68 | 0.93 | 36.0 | | 12 | R2 | 55 | 1.4 | 0.449 | 52.5 | LOS D | 2.5 | 17.8 | 1.00 | 0.75 | 1.00 | 31.7 | | Appro | ach | 142 | 1.4 | 0.449 | 45.8 | LOS D | 2.5 | 17.8 | 0.96 | 0.71 | 0.96 | 34.0 | | All Vel | hicles | 1921 | 1.4 | 0.896 | 44.6 | LOS D | 24.3 | 171.9 | 0.98 | 0.89 | 1.14 | 34.3 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. #### MOVEMENT SUMMARY #### Site: 8 [Woodlands Drive and Western Service Road - Intersection 8 - PM Peak] Woodlands Drive and Western Service Road - Intersection 8 Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 90 seconds (Site Practical Cycle Time) Variable Sequence Analysis applied. The results are given for the selected output sequence. | Mov | Turn | Demand | | Deg. | Average | Level of | 95% Back | | Prop. | Effective | Aver. No. | Average | |---------|-------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/t | | South: | Road West | ern Service I | Road | | | | | | | | | | | 1 | L2 | 85 | 1.4 | 0.726 | 47.2 | LOS D | 9.3 | 66.0 | 1.00 | 0.87 | 1.11 | 33.3 | | 2 | T1 | 6 | 1.4 | 0.726 | 41.6 | LOS D | 9.3 | 66.0 | 1.00 | 0.87 | 1.11 | 33.9 | | 3 | R2 | 443 | 1.4 | 0.726 | 42.8 | LOS D | 13.8 | 98.1 | 0.98 | 0.87 | 1.06 | 34.7 | | Appro | ach | 534 | 1.4 | 0.726 | 43.5 | LOS D | 13.8 | 98.1 | 0.99 | 0.87 | 1.07 | 34.5 | | East: \ | Woodlands I | Orive | | | | | | | | | | | | 4 | L2 | 356 | 1.4 | 0.792 | 44.1 | LOS D | 16.0 | 113.3 | 1.00 | 0.91 | 1.13 | 34.2 | | 5 | T1 | 652 | 1.4 | 0.724 | 42.9 | LOS D | 16.1 | 114.1 | 0.98 | 0.88 | 1.34 | 35.2 | | 6 | R2 | 6 | 1.4 | 0.724 | 56.7 | LOSE | 16.1 | 114.1 | 0.98 | 0.90 | 1.68 | 32.2 | | Appro | ach | 1014 | 1.4 | 0.792 | 43.4 | LOS D | 16.1 | 114.1 | 0.98 | 0.89 | 1.27 | 34.8 | | North: | Jessica CI | | | | | | | | | | | | | 7 | L2 | 16 | 1.4 | 0.069 | 39.1 | LOS D | 0.9 | 6.0 | 0.86 | 0.68 | 0.86 | 36.5 | | 8 | T1 | 7 | 1.4 | 0.069 | 33.6 | LOSC | 0.9 | 6.0 | 0.86 | 0.68 | 0.86 | 37.2 | | 9 | R2 | 11 | 1.4 | 0.090 | 50.4 | LOS D | 0.5 | 3.4 | 0.97 | 0.67 | 0.97 | 32.6 | | Appro | ach | 34 | 1.4 | 0.090 | 41.6 | LOS D | 0.9 | 6.0 | 0.90 | 0.68 | 0.90 | 35.3 | | West: | Woodlands | Drive | | | | | | | | | | | | 10 | L2 | 5 | 1.4 | 0.853 | 49.3 | LOS D | 17.6 | 124.8 | 1.00 | 0.99 | 1.22 | 34.3 | | 11 | T1 | 1088 | 1.4 | 0.853 | 43.8 | LOS D | 17.6 | 124.9 | 1.00 | 0.99 | 1.22 | 34.9 | | 12 | R2 | 59 | 1.4 | 0.481 | 52.6 | LOS D | 2.7 | 19.1 | 1.00 | 0.75 | 1.00 | 31.7 | | Appro | ach | 1152 | 1.4 | 0.853 | 44.2 | LOS D | 17.6 | 124.9 | 1.00 | 0.98 | 1.21 | 34.7 | | All Vel | hicles | 2734 | 1.4 | 0.853 | 43.8 | LOS D | 17.6 | 124.9 | 0.99 | 0.92 | 1.20 | 34.7 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). ### Site: 9 [Woodlands Drive and Lincoln Street - Intersection 9 - AM Peak] Woodlands Drive and Lincoln Street - Intersection 9 Site Category: (None) Stop (Two-Way) | Mov | Turn | Demand | Flows | Deg. | Average | Level of | 95% Back (| of Queue | Prop. | Effective | Aver. No. | Average | |---------|---------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/h | | East: V | oodlands Di | rive | | | | | | | | | | | | 5 | T1 | 1188 | 1.2 | 0.309 | 0.0 | LOSA | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 59.9 | | 6 | R2 | 119 | 1.2 | 0.132 | 7.8 | LOS A | 0.5 | 3.8 | 0.49 | 0.71 | 0.49 | 51.6 | | Approa | ch | 1307 | 1.2 | 0.309 | 0.7 | NA | 0.5 | 3.8 | 0.04 | 0.06 | 0.04 | 59.1 | | North: | Lincoln Stree | t | | | | | | | | | | | | 7 | L2 | 339 | 1.2 | 11.851 | 4912.2 | LOSF | 212.9 | 1505.5 | 1.00 | 2.95 | 6.91 | 0.7 | | 9 | R2 | 277 | 1.2 | 11.851 | 4926.3 | LOS F | 212.9 | 1505.5 | 1.00 | 2.95 | 6.91 | 0.7 | | Approa | ch | 616 | 1.2 | 11.851 | 4918.5 | LOS F | 212.9 | 1505.5 | 1.00 | 2.95 | 6.91 | 0.7 | | West: \ | Voodlands D | rivead | | | | | | | | | | | | 10 | L2 | 34 | 1.2 | 0.117 | 5.6 | LOSA | 0.0 | 0.0 | 0.00 | 0.09 | 0.00 | 57.5 | | 11 | T1 | 418 | 1.2 | 0.117 | 0.0 | LOSA | 0.0 | 0.0 | 0.00 | 0.04 | 0.00 | 59.6 | | Approa | ch | 452 | 1.2 | 0.117 | 0.4 | NA | 0.0 | 0:0 | 0.00 | 0.04 | 0.00 | 59.4 | | All Veh |
icles | 2375 | 1.2 | 11.851 | 1276.2 | NA | 212.9 | 1505.5 | 0.28 | 0.81 | 1.82 | 2.7 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Minor Road Approach LOS values are based on average delay for all vehicle movements. NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. #### MOVEMENT SUMMARY #### Site: 9 [Woodlands Drive and Lincoln Street - Intersection 9 - Midday Peak] Woodlands Drive and Lincoln Street - Intersection 9 Site Category: (None) Stop (Two-Way) | Mov | Turn | Demand | Flows | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |----------|---------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/h | | East: W | /oodlands Di | | | 110 | 300 | | 2011 | | | | | KIIIII | | 5 | T1 | 648 | 1.2 | 0.169 | 0.0 | LOSA | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 60.0 | | 6 | R2 | 140 | 1.2 | 0.220 | 10.2 | LOS B | 0.9 | 6.1 | 0.62 | 0.84 | 0.63 | 49.9 | | Approa | ch | 788 | 1.2 | 0.220 | 1.8 | NA | 0.9 | 6.1 | 0.11 | 0.15 | 0.11 | 57.9 | | North: I | Lincoln Stree | t | | | | | | | | | | | | 7 | L2 | 157 | 1.2 | 1.269 | 172.9 | LOS F | 24.3 | 171.9 | 1.00 | 2.67 | 5.62 | 14.0 | | 9 | R2 | 61 | 1.2 | 1.269 | 247.8 | LOS F | 24.3 | 171.9 | 1.00 | 2.67 | 5.62 | 14.0 | | Approa | ch | 218 | 1.2 | 1.269 | 193.9 | LOS F | 24.3 | 171.9 | 1.00 | 2.67 | 5.62 | 14.0 | | West: V | Voodlands D | rivead | | | | | | | | | | | | 10 | L2 | 46 | 1.2 | 0.190 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.08 | 0.00 | 57.6 | | 11 | T1 | 686 | 1.2 | 0.190 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.03 | 0.00 | 59.6 | | Approa | ch | 732 | 1.2 | 0.190 | 0.4 | NA | 0.0 | 0.0 | 0.00 | 0.04 | 0.00 | 59.5 | | All Vehi | icles | 1738 | 1.2 | 1.269 | 25.3 | NA | 24.3 | 171.9 | 0.18 | 0.42 | 0.76 | 41.8 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Minor Road Approach LOS values are based on average delay for all vehicle movements. NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D). # Site: 9 [Woodlands Drive and Lincoln Street - Intersection 9 - PM Peak] Woodlands Drive and Lincoln Street - Intersection 9 Site Category: (None) Stop (Two-Way) | Mov | Turn | Demand | Flows | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |----------|---------------|----------------|---------|-------------|---------------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/h | | East: V | oodlands Dr | rive | 1000 | 777.00 | VECENTAL CONTRACTOR | | | 23541 | | | | 0.500000 | | 5 | T1 | 568 | 1.2 | 0.148 | 0.0 | LOS A | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 60.0 | | 6 | R2 | 130 | 1.2 | 0.335 | 16.3 | LOS C | 1.4 | 9.8 | 0.80 | 0.97 | 0.99 | 46.1 | | Арргоа | ch | 698 | 1.2 | 0.335 | 3.1 | NA | 1.4 | 9.8 | 0.15 | 0.18 | 0.18 | 56.8 | | North: I | Lincoln Stree | t | | | | | | | | | | | | 7 | L2 | 185 | 1.2 | 2.059 | 517.2 | LOSF | 47.0 | 332.2 | 1.00 | 3.42 | 8.10 | 6:0 | | 9 | R2 | 51 | 1.2 | 2.059 | 594.1 | LOSF | 47.0 | 332.2 | 1.00 | 3.42 | 8.10 | 6.0 | | Approa | ch | 236 | 1.2 | 2.059 | 533.8 | LOSF | 47.0 | 332.2 | 1.00 | 3.42 | 8.10 | 6.0 | | West: \ | Voodlands D | rive | | | | | | | | | | | | 10 | L2 | 107 | 1.2 | 0.278 | 5.6 | LOSA | 0.0 | 0.0 | 0.00 | 0.12 | 0.00 | 57.2 | | 11 | T1 | 963 | 1.2 | 0.278 | 0.0 | LOSA | 0.0 | 0.0 | 0.00 | 0.05 | 0.00 | 59.5 | | Approa | ch | 1070 | 1.2 | 0.278 | 0.6 | NA | 0.0 | 0.0 | 0.00 | 0.06 | 0.00 | 59.2 | | All Veh | icles | 2004 | 1.2 | 2.059 | 64.2 | NA | 47.0 | 332.2 | 0.17 | 0.50 | 1.02 | 28.6 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Minor Road Approach LOS values are based on average delay for all vehicle movements. NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. #### MOVEMENT SUMMARY ## Site: 10 [Woodlands Drive and Country Club Estate Access - Intersection 10 - AM Peak] Woodlands Drive and Country Club Estate Access - Intersection 10 Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 70 seconds (Site Practical Cycle Time) Variable Sequence Analysis applied. The results are given for the selected output sequence. | Mov | Turn | Demand | Flows | Deg | Average | Level of | 95% Back | of Queue | Prop | Effective | Aver No. | Average | |---------|-------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|----------|---------------| | ID | 100000 | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Slop Rate | Cycles | Speed
km/h | | South: | RoadNWoo | dlands Drive | ame | 0.000 | 000000000 | | 1500000 | | | | | 30,00,01 | | 1 | L2 | 315 | 1.2 | 0.720 | 22.9 | LOS C | 13.8 | 97.6 | 0.90 | 0.88 | 1.11 | 44.5 | | 2 | T1 | 687 | 1.2 | 0.720 | 21.6 | LOSC | 14.5 | 102.2 | 0.92 | 0.86 | 1.03 | 43.8 | | 3 | R2 | 300 | 1.2 | 0.671 | 32.9 | LOS C | 9.8 | 69.0 | 0.96 | 0.85 | 1.00 | 38.4 | | Appro | ach | 1302 | 1.2 | 0.720 | 24.5 | LOS C | 14.5 | 102.2 | 0.93 | 0.86 | 1.04 | 42.6 | | East: 1 | The Woodlar | nds Access | | | | | | | | | | | | 4 | L2 | 45 | 1.2 | 0.035 | 7.1 | LOS A | 0.3 | 2.0 | 0.28 | 0.61 | 0.28 | 53.0 | | 5 | T1 | 2 | 1.2 | 0.007 | 26.9 | LOSC | 0.1 | 0.4 | 0.86 | 0.53 | 0.86 | 41.7 | | 6 | R2 | 14 | 1.2 | 0.089 | 39.2 | LOS D | 0.5 | 3.3 | 0.95 | 0.68 | 0.95 | 36.2 | | Appro | ach | 61 | 1.2 | 0.089 | 15.1 | LOS B | 0.5 | 3.3 | 0.45 | 0.62 | 0.45 | 47.5 | | North: | Woodlands | Drive | | | | | | | | | | | | 7 | L2 | 80 | 1.2 | 0.625 | 34.7 | LOSC | 7.3 | 51.6 | 0.97 | 0.82 | 0.99 | 39.8 | | 8 | T1 | 349 | 1.2 | 0.625 | 30.0 | LOSC | 7.3 | 51.6 | 0.97 | 0.82 | 1.00 | 40.0 | | 9 | R2 | 118 | 1.2 | 0.748 | 44.0 | LOS D | 4.4 | 31.4 | 1.00 | 0.88 | 1.26 | 34.3 | | Appro | ach | 547 | 1.2 | 0.748 | 33.7 | LOS C | 7.3 | 51.6 | 0.98 | 0.83 | 1.06 | 38.6 | | West: | Country Clu | b Estate Acc | ess | | | | | | | | | | | 10 | L2 | 35 | 1.2 | 0.149 | 18.8 | LOS B | 1.1 | 7.9 | 0.81 | 0.72 | 0.81 | 45.5 | | 11 | T1 | 2 | 1.2 | 0.149 | 13.2 | LOS B | 1.1 | 7.9 | 0.81 | 0.72 | 0.81 | 46.0 | | 12 | R2 | 44 | 1.2 | 0.149 | 29.9 | LOSC | 1.1 | 7.9 | 0.89 | 0.71 | 0.89 | 39.7 | | Appro | ach | 81 | 1.2 | 0.149 | 24.7 | LOS C | 1.1 | 7.9 | 0.85 | 0.71 | 0.85 | 42.2 | | All Veh | nicles | 1991 | 1.2 | 0.748 | 26.7 | LOSC | 14.5 | 102.2 | 0.92 | 0.84 | 1.02 | 41.5 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). #### Site: 10 [Woodlands Drive and Country Club Estate Access - Intersection 10 - Midday Peak] Woodlands Drive and Country Club Estate Access - Intersection 10 Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 70 seconds (Site Practical Cycle Time) Variable Sequence Analysis applied. The results are given for the selected output sequence. | Mov | Turn | Demand | | Deg | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|-------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/l | | South: | RoadNWoo | dlands Drive | eame | | | | | | | | | | | 1 | L2 | 107 | 1.2 | 0.592 | 28.4 | LOSC | 8.3 | 58.5 | 0.91 | 0.83 | 1.18 | 42.3 | | 2 | T1 | 477 | 1.2 | 0.592 | 24.6 | LOSC | 8.7 | 61.2 | 0.93 | 0.80 | 1.04 | 42.4 | | 3 | R2 | 100 | 1.2 | 0.634 | 42.4 | LOS D | 3.6 | 25.7 | 1.00 | 0.82 | 1.12 | 34.9 | | Appro | ach | 684 | 1.2 | 0.634 | 27.8 | LOS C | 8.7 | 61.2 | 0.93 | 0.81 | 1.07 | 41.1 | | East: | The Woodla | nds Access | | | | | | | | | | | | 4 | L2 | 182 | 1.2 | 0.156 | 8.5 | LOS A | 1.7 | 12.2 | 0.39 | 0.66 | 0.39 | 51.9 | | 5 | T1 | 3 | 1.2 | 0.010 | 27.0 | LOSC | 0.1 | 0.6 | 0.86 | 0.55 | 0.86 |
41.6 | | 6 | R2 | 31 | 12.0 | 0.211 | 40.2 | LOS D | 1.1 | 8.2 | 0.96 | 0.72 | 0.96 | 35.6 | | Appro | ach | 216 | 2.8 | 0.211 | 13.3 | LOS B | 1.7 | 12.2 | 0.48 | 0.66 | 0.48 | 48.6 | | North: | Woodlands | Drive | | | | | | | | | | | | 7 | L2 | 30 | 1.2 | 0.480 | 30.0 | LOSC | 6.8 | 47.9 | 0.90 | 0.75 | 0.90 | 42.5 | | 8 | T1 | 423 | 1.2 | 0.480 | 24.8 | LOSC | 6.8 | 48.0 | 0.90 | 0.75 | 0.90 | 42.6 | | 9 | R2 | 42 | 1.2 | 0.266 | 40.2 | LOS D | 1.4 | 10.2 | 0.97 | 0.73 | 0.97 | 35.5 | | Appro | ach | 495 | 1.2 | 0.480 | 26.4 | LOS C | 6.8 | 48.0 | 0.91 | 0.75 | 0.91 | 41.9 | | West: | Country Clu | b Estate Acc | ess | | | | | | | | | | | 10 | L2 | 73 | 1.2 | 0.352 | 32.5 | LOSC | 3.8 | 26.9 | 0.90 | 0.77 | 0.90 | 38.9 | | 11 | T1 | 2 | 1.2 | 0.352 | 26.9 | LOSC | 3.8 | 26.9 | 0.90 | 0.77 | 0.90 | 39.2 | | 12 | R2 | 161 | 1.2 | 0.352 | 33.7 | LOSC | 3.8 | 26.9 | 0.92 | 0.77 | 0.92 | 38.1 | | Appro | ach | 236 | 1.2 | 0.352 | 33.3 | LOS C | 3.8 | 26.9 | 0.91 | 0.77 | 0.91 | 38.3 | | ΔII Vel | hicles | 1631 | 1.4 | 0.634 | 26.3 | LOSC | 8.7 | 61.2 | 0.86 | 0.77 | 0.92 | 41.8 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. #### MOVEMENT SUMMARY #### Site: 10 [Woodlands Drive and Country Club Estate Access - Intersection 10 - PM Peak] Woodlands Drive and Country Club Estate Access - Intersection 10 Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 70 seconds (Site Practical Cycle Time) Variable Sequence Analysis applied. The results are given for the selected output sequence. | Mov | Turn | Demand | Flows | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|-------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/l | | South: | RoadNWoo | dlands Drive | ame | | | | | | | | | | | 1 | L2 | 48 | 1.2 | 0.557 | 31.3 | LOS C | 8.2 | 58.1 | 0.91 | 0.81 | 1.21 | 41.4 | | 2 | T1 | 515 | 1.2 | 0.557 | 25.3 | LOS C | 8.4 | 59.6 | 0.91 | 0.79 | 1.05 | 42.3 | | 3 | R2 | 42 | 1.2 | 0.266 | 40.2 | LOS D | 1.4 | 10.2 | 0.97 | 0.73 | 0.97 | 35.7 | | Appro | ach | 605 | 1.2 | 0.557 | 26.8 | LOS C | 8.4 | 59.6 | 0.92 | 0.78 | 1.06 | 41.7 | | East 1 | The Woodlan | nds Access | | | | | | | | | | | | 4 | L2 | 184 | 1.2 | 0.150 | 6.8 | LOS A | 1.0 | 7.4 | 0.27 | 0.63 | 0.27 | 53.2 | | 5 | T1 | 11 | 1.2 | 0.036 | 27.5 | LOSC | 0.3 | 2.3 | 0.87 | 0.60 | 0.87 | 41.4 | | 6 | R2 | 70 | 1.2 | 0.444 | 41.0 | LOS D | 2.5 | 17.4 | 0.99 | 0.75 | 0.99 | 35.5 | | Appro | ach | 265 | 1.2 | 0.444 | 16.7 | LOS B | 2.5 | 17.4 | 0.49 | 0.66 | 0.49 | 46.5 | | North: | Woodlands | Drive | | | | | | | | | | | | 7 | L2 | 21 | 1.2 | 0.502 | 29.4 | LOS C | 7.4 | 52.5 | 0.89 | 0.75 | 0.89 | 43.0 | | 8 | T1 | 480 | 1.2 | 0.502 | 24.2 | LOS C | 7.5 | 52.8 | 0.90 | 0.75 | 0.90 | 42.9 | | 9 | R2 | 38 | 1.2 | 0.241 | 40.1 | LOS D | 1.3 | 9.2 | 0.97 | 0.72 | 0.97 | 35.6 | | Appro | ach | 539 | 1.2 | 0.502 | 25.5 | LOS C | 7.5 | 52.8 | 0.90 | 0.75 | 0.90 | 42.3 | | West: | Country Clu | b Estate Acc | ess | | | | | | | | | | | 10 | L2 | 109 | 1.2 | 0.533 | 32.1 | LOS C | 6.5 | 45.8 | 0.93 | 0.81 | 0.93 | 39.0 | | 11 | T1 | 2 | 1.2 | 0.533 | 26.5 | LOS C | 6.5 | 45.8 | 0.93 | 0.81 | 0.93 | 39.4 | | 12 | R2 | 251 | 1.2 | 0.533 | 34.7 | LOSC | 6.5 | 45.8 | 0.95 | 0.80 | 0.95 | 37.7 | | Appro | ach | 362 | 1.2 | 0.533 | 33.9 | LOS C | 6.5 | 45.8 | 0.94 | 0.80 | 0.94 | 38.1 | | All Veh | nicles | 1771 | 1.2 | 0.557 | 26.3 | LOS C | 8.4 | 59.6 | 0.85 | 0.76 | 0.90 | 41.7 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). #### Site: 11 [Woodlands Drive and Woodlands Office Park Entrance/Pestle Street - Intersection 11 - AM Peak] Woodlands Drive and Woodlands Office Park Entrance Road/Pestle Street - Intersection 10 Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 40 seconds (Site Practical Cycle Time) | Mov | Turn | Demand | Flows | Deg | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|--------------|----------------|-----------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/h | | South: | Woodlands | | 70 | VIC | 300 | | VCII | -111 | | | | KILUTI | | 1 | L2 | 58 | 1.2 | 0.045 | 6.6 | LOS A | 0.2 | 1.3 | 0.32 | 0.63 | 0.32 | 52.6 | | 2 | T1 | 533 | 1.2 | 0.501 | 6.2 | LOS A | 6.6 | 46.8 | 0.66 | 0.58 | 0.66 | 54.5 | | 3 | R2 | 229 | 1.2 | 0.693 | 21.4 | LOSC | 4.6 | 32.8 | 0.92 | 0.91 | 1.13 | 43.5 | | Approa | ach | 820 | 1.2 | 0.693 | 10.5 | LOS B | 6.6 | 46.8 | 0.71 | 0.68 | 0.77 | 50.8 | | East: V | Voodlands (| Office Park E | ntrance R | oad | | | | | | | | | | 4 | L2 | 56 | 1.2 | 0.078 | 9.5 | LOS A | 0.5 | 3.2 | 0.57 | 0.67 | 0.57 | 51.2 | | 5 | T1 | 1 | 1.2 | 0.003 | 16.0 | LOS B | 0.0 | 0.1 | 0.87 | 0.51 | 0.87 | 47.6 | | 6 | R2 | 19 | 1.2 | 0.065 | 22.2 | LOSC | 0.3 | 2.4 | 0.89 | 0.68 | 0.89 | 43.4 | | Approa | ach | 76 | 1.2 | 0.078 | 12.8 | LOS B | 0.5 | 3.2 | 0.65 | 0.67 | 0.65 | 48.9 | | North: | Woodlands | Drive | | | | | | | | | | | | 7 | L2 | 66 | 1.2 | 0.036 | 5.6 | LOSA | 0.0 | 0.0 | 0.00 | 0.53 | 0.00 | 54.9 | | 8 | T1 | 688 | 1.2 | 0.646 | 6.9 | LOS A | 9.6 | 68.1 | 0.75 | 0.67 | 0.75 | 53.9 | | 9 | R2 | 153 | 1.2 | 0.371 | 15.3 | LOS B | 2.3 | 16.0 | 0.74 | 0.77 | 0.74 | 46.7 | | Approa | ach | 907 | 1.2 | 0.646 | 8.3 | LOS A | 9.6 | 68.1 | 0.69 | 0.67 | 0.69 | 52.6 | | West: | Pestle Stree | et | | | | | | | | | | | | 10 | L2 | 8 | 1.2 | 0.032 | 22.0 | LOSC | 0.2 | 1.1 | 0.88 | 0.65 | 0.88 | 43.5 | | 11 | T1 | 1 | 1.2 | 0.032 | 16.5 | LOS B | 0.2 | 1.1 | 0.88 | 0.65 | 0.88 | 44.4 | | 12 | R2 | 9 | 1.2 | 0.030 | 22.0 | LOSC | 0.2 | 1.1 | 0.88 | 0.65 | 0.88 | 43.4 | | Approa | ach | 18 | 1.2 | 0.032 | 21.7 | LOS C | 0.2 | 1.1 | 0.88 | 0.65 | 0.88 | 43.5 | | All Veh | nicles | 1821 | 1.2 | 0.693 | 9.6 | LOSA | 9.6 | 68.1 | 0.70 | 0.67 | 0.73 | 51.5 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. #### MOVEMENT SUMMARY #### B Site: 11 [Woodlands Drive and Woodlands Office Park Entrance/Pestle Street - Intersection 11 - Midday Peak] Woodlands Drive and Woodlands Office Park Entrance Road/Pestle Street - Intersection 10 Site Category: (None) Signals - Fixed Time Isolated | Cycle Time = 30 seconds (Site Practical Cycle Time) | Mov | Turn | Demand | | Deg. | Average | Level of | 95% Back | | Prop. | Effective | Aver. No. | Average | |---------|--------------|----------------|-----------|-------|---------|----------|----------|----------|--------|-----------|-----------|---------| | ID | | Total | HV | Satn | Delay | Service | Vehicles | Distance | Queued | Stop Rate | Cycles | Speed | | South | Woodlands | veh/h
Drive | % | v/c | sec | | veh | л | | | | km/l | | 1 | L2 | 20 | 1.2 | 0.018 | 6.9 | LOSA | 0.1 | 0.4 | 0.42 | 0.63 | 0.42 | 52.3 | | 2 | T1 | 502 | 1.2 | 0.649 | 8.8 | LOSA | 6.5 | 46.2 | 0.86 | 0.78 | 0.93 | 52. | | 3 | R2 | 72 | 1.2 | 0.213 | 17.3 | LOSB | 1.0 | 6.8 | 0.87 | 0.74 | 0.87 | 45. | | Appro | 110 | 594 | 1.2 | 0.649 | 9.8 | LOSA | 6.5 | 46.2 | 0.85 | 0.77 | 0.90 | 51. | | Fast \ | Mondlands (| Office Park E | ntrance R | nad | | | | | | | | | | 4 | L2 | 61 | 1.2 | 0.073 | 9.2 | LOSA | 0.4 | 2.8 | 0.64 | 0.68 | 0.64 | 51. | | 5 | T1 | 2 | 1.2 | 0.005 | 10.7 | LOSB | 0.0 | 0.2 | 0.82 | 0.50 | 0.82 | 51. | | 6 | R2 | 67 | 1.2 | 0.176 | 17.2 | LOS B | 0.9 | 6.2 | 0.86 | 0.73 | 0.86 | 46. | | Appro | ach | 130 | 1.2 | 0.176 | 13.3 | LOS B | 0.9 | 6.2 | 0.76 | 0.70 | 0.76 | 48. | | North: | Woodlands | Drive | | | | | | | | | | | | 7 | L2 | 56 | 1.2 | 0.030 | 5.6 | LOSA | 0.0 | 0.0 | 0.00 | 0.53 | 0.00 | 54. | | 8 | T1 | 492 | 1.2 | 0.636 | 8.6 | LOSA | 6.3 | 44.6 | 0.86 | 0.76 | 0.91 | 52. | | 9 | R2 | 20 | 1.2 | 0.060 | 16.7 | LOS B | 0.3 | 1.8 | 0.84 | 0.69 | 0.84 | 45. | | Appro | ach | 568 | 1.2 | 0.636 | 8.6 | LOSA | 6.3 | 44.6 | 0.77 | 0.74 | 0.82 | 52. | | West: | Pestle Stree | t | | | | | | | | | | | | 10 | L2 | 25 | 1.2 | 0.076 | 16.8 | LOS B | 0.4 | 2.5 | 0.84 | 0.68 | 0.84 | 46. | | 11 | T1 | 3 | 1.2 | 0.076 | 11.2 | LOS B | 0.4 | 2.5 | 0.84 | 0.68 | 0.84 | 47. | | 12 | R2 | 14 | 1.2 | 0.035 | 16.5 | LOS B | 0.2 | 1.2 | 0.83 | 0.66 | 0.83 | 46. | | Appro | ach | 42 | 1.2 | 0.076 | 16.3 | LOS B | 0.4 | 2.5 | 0.84 | 0.68 | 0.84 | 46. | | All Vel | nicles | 1334 | 1.2 | 0.649 | 9.8 | LOSA | 6.5 | 46.2 | 0.81 | 0.74 | 0.85 | 51. | Site Level
of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D). #### Site: 11 [Woodlands Drive and Woodlands Office Park Entrance/Pestle Street - Intersection 11 - PM Peak] Woodlands Drive and Woodlands Office Park Entrance Road/Pestle Street - Intersection 10 Signals - Fixed Time Isolated Cycle Time = 30 seconds (Site Practical Cycle Time) | Mov | Turn | Demand | | Deg | Average | Level of | 95% Back | | Ргор. | Effective | Aver. No. | Average | |---------|--------------|----------------|-----------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|--------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/ | | South: | Woodlands | | 70 | 1/0 | 300 | | VCII | - 11 | | | | KILL | | 1 | L2 | 11 | 1.2 | 0.010 | 6.9 | LOS A | 0.0 | 0.2 | 0.41 | 0.62 | 0.41 | 52. | | 2 | T1 | 552 | 1.2 | 0.713 | 10.0 | LOSA | 7.8 | 55.2 | 0.89 | 0.85 | 1.03 | 51. | | 3 | R2 | 32 | 1.2 | 0.114 | 19.0 | LOS B | 0.4 | 3.2 | 0.91 | 0.70 | 0.91 | 44. | | Approa | ach | 595 | 1.2 | 0.713 | 10.4 | LOS B | 7.8 | 55.2 | 0.89 | 0.83 | 1.02 | 51. | | East: V | Voodlands (| Office Park E | ntrance R | oad | | | | | | | | | | 4 | L2 | 69 | 1.2 | 0.090 | 10.3 | LOS B | 0.5 | 3.7 | 0.71 | 0.69 | 0.71 | 50. | | 5 | T1 | 1 | 1.2 | 0.003 | 10.6 | LOS B | 0.0 | 0.1 | 0.81 | 0.48 | 0.81 | 51. | | 6 | R2 | 216 | 1.2 | 0.592 | 18.8 | LOS B | 3.2 | 22.8 | 0.95 | 0.83 | 1.05 | 45. | | Approa | ach | 286 | 1.2 | 0.592 | 16.7 | LOS B | 3.2 | 22.8 | 0.90 | 0.80 | 0.97 | 46. | | North: | Woodlands | Drive | | | | | | | | | | | | 7 | L2 | 16 | 1.2 | 0.009 | 5.6 | LOS A | 0.0 | 0.0 | 0.00 | 0.53 | 0.00 | 54. | | 8 | T1 | 606 | 1.2 | 0.783 | 11.9 | LOS B | 9.6 | 67.6 | 0.93 | 0.94 | 1.19 | 50. | | 9 | R2 | 2 | 1.2 | 0.007 | 17.3 | LOS B | 0.0 | 0.2 | 0.85 | 0.61 | 0.85 | 45. | | Approa | ach | 624 | 1.2 | 0.783 | 11.8 | LOS B | 9.6 | 67.6 | 0.91 | 0.93 | 1.15 | 50. | | West: I | Pestle Stree | t . | | | | | | | | | | | | 10 | L2 | 48 | 1.2 | 0.136 | 17.0 | LOS B | 0.6 | 4.6 | 0.85 | 0.71 | 0.85 | 46. | | 11 | T1 | 2 | 1.2 | 0.136 | 11.4 | LOS B | 0.6 | 4.6 | 0.85 | 0.71 | 0.85 | 47. | | 12 | R2 | 28 | 1.2 | 0.070 | 16.7 | LOS B | 0.4 | 2.5 | 0.84 | 0.69 | 0.84 | 46. | | Approa | ach | 78 | 1.2 | 0.136 | 16.8 | LOS B | 0.6 | 4.6 | 0.85 | 0.71 | 0.85 | 46. | | | | | | | | | | | | | | | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. # MOVEMENT SUMMARY # Site: 7 [Western Service Road and The woodlands Access - Intersection 7 - AM Peak - After Hours Traffic] Western Service Road and The woodlands Access - Intersection 7 Site Category: (None) Roundabout | Mov | Turn | Demand | Flows | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|------------|-------------|-------|-------|---------|----------|----------|----------|--------|-----------|-----------|---------| | ID | | Total | HV | Satn | Delay | Service | Vehicles | Distance | Queued | Stop Rate | Cycles | Speed | | | | veh/h | % | v/c | sec | | veh | m | | | | km/r | | South: | Western Se | ervice Road | | | | | | | | | | | | 1 | L2 | 6 | 2.0 | 0.022 | 5.4 | LOSA | 0.1 | 0.7 | 0.12 | 0.50 | 0.12 | 53.2 | | 2 | T1 | 18 | 2.0 | 0.022 | 5.0 | LOSA | 0.1 | 0.7 | 0.12 | 0.50 | 0.12 | 54.0 | | Approa | ich | 24 | 2.0 | 0.022 | 5.1 | LOSA | 0.1 | 0.7 | 0.12 | 0.50 | 0.12 | 53.8 | | North: | Western Se | rvice Road | | | | | | | | | | | | 8 | T1 | 34 | 2.0 | 0.040 | 4.8 | LOSA | 0.2 | 1.3 | 0.02 | 0.60 | 0.02 | 53.5 | | 9 | R2 | 25 | 2.0 | 0.040 | 7.6 | LOSA | 0.2 | 1.3 | 0.02 | 0.60 | 0.02 | 53.1 | | Approa | ich | 59 | 2.0 | 0.040 | 6.0 | LOS A | 0.2 | 1.3 | 0.02 | 0.60 | 0.02 | 53.4 | | West: | The woodla | nds Access | | | | | | | | | | | | 10 | L2 | 1 | 2.0 | 0.001 | 5.8 | LOSA | 0.0 | 0.0 | 0.09 | 0.61 | 0.09 | 51.8 | | 12 | R2 | 1 | 2.0 | 0.001 | 7.7 | LOSA | 0.0 | 0.0 | 0.09 | 0.62 | 0.09 | 52.3 | | Approa | ach | 2 | 2.0 | 0.001 | 6.8 | LOSA | 0.0 | 0.0 | 0.09 | 0.61 | 0.09 | 52.1 | | All Veh | icles | 85 | 2.0 | 0.040 | 5.7 | LOSA | 0.2 | 1.3 | 0.05 | 0.57 | 0.05 | 53.4 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS. Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. Roundabout Capacity Model: SIDRA Standard. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). # Site: 7 [Western Service Road and The woodlands Access - Intersection 7 - PM Peak - After Hours Traffic] Western Service Road and The woodlands Access - Intersection 7 Site Category: (None) Roundabout | Mov | Tum | Demand | Flows | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|------------|----------------|---------|-------------|--------------|----------|-----------------|----------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance | Queued | Stop Rate | Cycles | Speed
km/h | | South: | Western Se | ervice Road | 70 | V/C | 306 | | Vell | m | | | | 550000 | | 1 | L2 | 1 | 2.0 | 0.034 | 5.3 | LOSA | 0.2 | 1.1 | 0.01 | 0.51 | 0.01 | 53.6 | | 2 | T1 | 49 | 2.0 | 0.034 | 4.8 | LOSA | 0.2 | 1.1 | 0.01 | 0.51 | 0.01 | 54.4 | | Appro | ach | 50 | 2.0 | 0.034 | 4.8 | LOS A | 0.2 | 1.1 | 0.01 | 0.51 | 0.01 | 54.4 | | North: | Western Se | ervice Road | | | | | | | | | | | | 8 | T1 | 39 | 2.0 | 0.027 | 4.8 | LOS A | 0.1 | 0.9 | 0.02 | 0.52 | 0.02 | 54.4 | | 9 | R2 | 1 | 2.0 | 0.027 | 7.6 | LOSA | 0.1 | 0.9 | 0.02 | 0.52 | 0.02 | 54.0 | | Appro | ach | 40 | 2.0 | 0.027 | 4.9 | LOSA | 0.1 | 0.9 | 0.02 | 0.52 | 0.02 | 54.4 | | West: | The woodla | nds Access | | | | | | | | | | | | 10 | L2 | 1 | 2.0 | 0.001 | 6.0 | LOS A | 0.0 | 0.0 | 0.16 | 0.59 | 0.16 | 51.7 | | 12 | R2 | 1 | 2.0 | 0.001 | 7.8 | LOSA | 0.0 | 0.0 | 0.16 | 0.60 | 0.16 | 52.1 | | Appro | ach | 2 | 2.0 | 0.001 | 6.9 | LOS A | 0.0 | 0.0 | 0.16 | 0.59 | 0.16 | 51.9 | | All Veh | nicles | 92 | 2.0 | 0.034 | 4.9 | LOSA | 0.2 | 1.1 | 0.02 | 0.51 | 0.02 | 54.4 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: SIDRA Roundabout LOS. Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. Roundabout Capacity Model: SIDRA Standard. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation. ### MOVEMENT SUMMARY ## Site: 8 [Woodlands Drive and Western Service Road - Intersection 8 - AM Peak - After Hours] Woodlands Drive and Western Service Road - Intersection 8 Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 60 seconds (Site Practical Cycle Time) Variable Sequence Analysis applied. The results are given for the selected output sequence. | Mov | Turn | Demand | Flows | Deg | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|-------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | HV
% | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/t | | South: | Road West | ern Service F | Road | | 2000000 | | 10.51.51.5 | | | | | | | 1 | L2 | 19 | 1.4 | 0.134 | 31.1 | LOS C | 0.8 | 5.4 | 0.93 | 0.71 | 1.02 | 39.1 | | 2 | T1 | 1 | 1.4 | 0.134 | 25.6 | LOS C | 0.8 | 5.4 | 0.93 | 0.71 | 1.02 | 39.8 | | 3 | R2 | 30 | 1.4 | 0.134 | 33.4 | LOS C | 0.8 | 5.4 | 0.94 | 0.70 | 0.96 | 38.1 | | Appro | ach | 50 | 1.4 | 0.134 | 32.4 | LOSC | 8.0 | 5.4 | 0.94 | 0.71 | 0.98 | 38.5 | | East: \ | Noodlands [| Orive | | | | | | | | | | | | 4 | L2 | 114 | 1.4 | 0.286 | 27.5 | LOS C | 2.9 | 20.5 | 0.88 | 0.76 | 0.88 | 40.5 | | 5 | T1 | 159 | 1.4 | 0.202 | 21.4 | LOSC | 2.1 | 14.8 | 0.86 | 0.66 | 0.86 | 44.4 | | 6 | R2 | 2 | 1.4 | 0.202 | 27.1 | LOSC | 1.9 | 13.5 | 0.86 | 0.66 | 0.86 | 43.5 | | Appro | ach | 275 | 1.4 | 0.286 | 24.0 | LOSC | 2.9 | 20.5 | 0.86 | 0.71 | 0.86 | 42.7 | | North: | Jessica CI | | | | | | | | | | | | | 7 | L2 | 1 | 1.4 | 0.006 | 27.3 | LOSC | 0.0 | 0.3 | 0.83 | 0.56 | 0.83 | 42.0 | | 8 | T1 | 41 | 1.4 | 0.006 | 21.7 | LOSC | 0.0 | 0.3 | 0.83 | 0.56 | 0.83 | 42.8 | | 9 | R2 | 4 | 1.4 | 0.005 | 32.5 | LOSC | 0.0 | 0.2 | 0.92 | 0.58 | 0.92 | 38.7 | | Appro | ach | 3 | 1.4 | 0.006 | 27.2 | LOS C | 0.0 | 0.3 | 0.86 | 0.57 | 0.86 | 41.1 | | West: | Woodlands | Drive | | | | | | | | | | | | 10 | L2 | 1 | 1.4 | 0.080 | 32.2 | LOSC | 0.5 | 3.5 | 0.92 | 0.64 | 0.92 | 40.8 | | 11 | T1 | 53 | 1.4 | 0.080 | 26.7 | LOSC | 0.5 | 3.5 | 0.92
| 0.64 | 0.92 | 41.7 | | 12 | R2 | 7 | 1.4 | 0.038 | 33.1 | LOS C | 0.2 | 1.4 | 0.93 | 0.65 | 0.93 | 38.1 | | Appro | ach | 61 | 1.4 | 0.080 | 27.5 | LOS C | 0.5 | 3.5 | 0.92 | 0.64 | 0.92 | 41.2 | | All Vel | nicles | 389 | 1.4 | 0.286 | 25.6 | LOSC | 2.9 | 20.5 | 0.88 | 0.70 | 0.89 | 41.9 | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used: Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D). ### Site: 8 [Woodlands Drive and Western Service Road - Intersection 8 - PM Peak - After Hours] | Mov | Turn | Demand | | Deg. | Average | Level of | 95% Back | of Queue | Prop. | Effective | Aver. No. | Average | |---------|-------------|----------------|------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------| | ID | | Total
veh/h | | Satn
v/c | Delay
sec | Service | Vehicles
veh | Distance
m | Queued | Stop Rate | Cycles | Speed
km/h | | South: | Road West | ern Service F | Road | | | | 100000 | 7,500 | | | | - | | 1 | L2 | 42 | 1.4 | 0.587 | 46.6 | LOS D | 2.6 | 18.3 | 1.00 | 0.85 | 1.52 | 33.5 | | 2 | T1 | 1 | 1.4 | 0.587 | 41.1 | LOS D | 2.6 | 18.3 | 1.00 | 0.85 | 1.52 | 34.0 | | 3 | R2 | 124 | 1.4 | 0.587 | 44.2 | LOS D | 3.8 | 27.2 | 1.00 | 0.81 | 1.14 | 34.2 | | Approa | ach | 167 | 1.4 | 0.587 | 44.8 | LOS D | 3.8 | 27.2 | 1.00 | 0.82 | 1.24 | 34.0 | | East: \ | Voodlands [|)rive | | | | | | | | | | | | 4 | L2 | 98 | 1.4 | 0.210 | 29.8 | LOS C | 2.9 | 20.4 | 0.83 | 0.75 | 0.83 | 39.5 | | 5 | T1 | 143 | 1.4 | 0.151 | 23.3 | LOSC | 2.1 | 15.0 | 0.81 | 0.63 | 0.81 | 43.4 | | 6 | R2 | 1 | 1.4 | 0.151 | 28.6 | LOS C | 2.0 | 14.1 | 0.80 | 0.62 | 0.80 | 42.0 | | Approa | ach | 242 | 1.4 | 0.210 | 26.0 | LOSC | 2.9 | 20.4 | 0.81 | 0.68 | 0.81 | 41. | | North: | Jessica CI | | | | | | | | | | | | | 7 | L2 | 1 | 1.4 | 0.005 | 29.5 | LOS C | 0.1 | 0.4 | 0.79 | 0.55 | 0.79 | 40.9 | | 8 | T1 | 1 | 1.4 | 0.005 | 24.0 | LOSC | 0.1 | 0.4 | 0.79 | 0.55 | 0.79 | 41. | | 9 | R2 | 1 | 1.4 | 0.006 | 39.5 | LOS D | 0.0 | 0.2 | 0.92 | 0.59 | 0.92 | 36. | | Approa | ach | 3 | 1.4 | 0.006 | 31.0 | LOSC | 0.1 | 0.4 | 0.84 | 0.57 | 0.84 | 39. | | West: | Woodlands | Drive | | | | | | | | | | | | 10 | L2 | 1 | 1.4 | 0.319 | 39.7 | LOS D | 2.6 | 18.4 | 0.95 | 0.73 | 0.95 | 37. | | 11 | T1 | 221 | 1.4 | 0.319 | 34.2 | LOSC | 2.6 | 18.5 | 0.95 | 0.73 | 0.95 | 38. | | 12 | R2 | 38 | 1.4 | 0.194 | 40.2 | LOS D | 1.3 | 9.5 | 0.95 | 0.72 | 0.95 | 35. | | Approa | ich | 260 | 1.4 | 0.319 | 35.1 | LOS D | 2.6 | 18.5 | 0.95 | 0.73 | 0.95 | 38. | | All Veh | nicles | 672 | 1.4 | 0.587 | 34.2 | LOSC | 3.8 | 27.2 | 0.91 | 0.73 | 0.97 | 38. | Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). # Nyeleti Consulting (Pty) Ltd. 2 Lynnwood Galleries 354 Rosemary Road Lynnwood 0081 > Tel: (012) 361 3629 Fax: (012) 361 3629 info@nyeleti.co.za # Woodmead bulk upgrade pipeline GPR scan GPR Scan of the underground services along the pipe route Prepared for r repared for Nyeleti – Municipal Services Prepared by C Moodley Reviewed by C.P Willemse 2020/01/22 Llikuse # **DOCUMENT CONTROL SHEET** Nyeleti – Municipal Services **CLIENT:** GPR Scan of the underground services along the pipe route PROJECT: **PROJECT NO.:** 21074 TITLE: GPR Scan of the underground services along the pipe route | Date | Document No. | Prepared by | Reviewed and Approved by | |------------|-----------------|-------------|--| | 22/01/2020 | 21074/R01/REV00 | C Moodley | Piet Willemse (Pr Tech Eng)
Specialist
Nyeleti Consulting (Pty) Ltd
ECSA Reg. No. 9070050 | | Signatures | | | Llikus | #### **CONTACT DETAILS:** Nyeleti Consulting (Pty) Ltd 2 Lynnwood Galleries 345 Rosemary Road Lynnwood **PRETORIA** P O Box 35158 MENLO PARK 0102 Telephone 012 361 3629 012 361 3525 Fax E-mail info@nyeleti.co.za Website www.nyeleti.co.za Certificate Number: 7827 ISO 9001:2008 # **TABLE OF CONTENT** | 1 | ntroduction | 3 | |-----|-------------------------------|----| | | Scope of Work | | | | Equipement | | | | GSSI Duel antenna GPR scanner | | | | indings | | | 4. | | | | 4.: | | | | 4. | 3 Sheet 4 & 5 | 10 | | 4. | \$ Sheet 5 & 6 | 12 | | 4. | | | | 4. | | | | 4. | | | | 5 | Conclusion | 18 | ## INTRODUCTION Johannesburg Water appointed Nyeleti Consulting – Municipal services to design a 5.2 km pipeline in extents of Marlboro and Woodmead, Johannesburg. Following the initial appointment, Johannesburg water added 1 km of pipeline north of the initial 5.2 km pipeline and a 100 m pipeline close to the Marlboro reservoir area, project no. UR1305B. The project area is located on the North-Eastern side of Johannesburg in Region E. The pipeline route will be from Marlboro to Woodmead and will be constructed predominantly along Western Services Road. Image 1: This is an indication of the layout of the proposed pipeline and route that was scanned. ## **SCOPE OF WORK** Nyeleti Consulting - Municipal services as appointed Nyeleti Consulting - Forensic services to conduct a GPR Survey of the pipeline route. The GPR survey will comprise of' - · GPR scan of relevant areas. - Layout plan drawings of findings - Report with finds ## **EQUIPEMENT** ### **GSSI Duel antenna GPR scanner** **GSSI utility Scan** UtilityScan® DF is GSSI's premium GPR unit for utility locating. It incorporates our innovative digital dual-frequency antenna (300 and 800 MHz) and an easy-to-use touchscreen interface to view shallow and deep targets simultaneously in a single scan. With an operation life of up to eight hours and a survey speed up to 10 km/h (6.25 mph), data collection is fast and efficient. Locate the position and depth of metallic and non-metallic objects, including service utilities such as gas, communications, sewer lines as well as underground storage tanks and PVC pipes. Typical Uses for UtilityScan DF Include: - Utility detection metallic and non-metallic - Environmental assessment - Damage prevention - Geological investigation - Archaeology - Forensics - Road inspection #### Other Benefits - Dual-frequency antenna (300 and 800 MHz) - Specifically designed for Utility industry - Operates exclusively with the GSSI digital dual-frequency antenna - Locate metallic and non-metallic utilities real-time - Simple user interface - Easy to transport and deploy - Fast data collection, up to 10 km/h (6.25 mph) - High definition, full-color touchscreen screen that provides clear images - 32-bit data quality delivers clear, precise images - Advanced display modes and signal floor tracking - Durable components that have been tested in the world's toughest field conditions **GSSI utility Scan Examples** # **FINDINGS** ## 4.1 Sheet 1 The images above shows that there are verious services crossing the path of the pipeline, a AutoCad co-ordinated drawing has been provided. # 4.2 Sheet 2 & 3 | Legend | | | | | |------------------|----------------------------------|--|--|--| | ● _{R.P} | Reference point | | | | | O ^{0.0} | Position of reading and depth | | | | | U.S | Unknown service detected | | | | | L.E.S | Live electrical service detected | | | | | | service detected | | | | | ⊕мн | Manhole | | | | Nyeleti Engineered to Excel |][| Date | Description | No. | |----|------|-------------|-----| | H | | | | | 11 | | | | | 11 | | | | | Н | | | | lyeleti Consulting -Municipal Services Voodmead GPR Scan Sheet 2 16941-002 Nyeleti Engineered to Excel | INO. | Description | Date | |------|-------------|------| Nyeleti Consulting -Municipal Services Woodmead GPR Scan | Sheet 3 | 3 | | | |----------------|--------------------|-------|-------| | Project number | 16941 | | | | Date | 14 September, 2021 | 1694 | 1-003 | | Drawn by | C.Moodley | | | | Checked by | C.P Willemse | Scale | 1:100 | The images above shows that there are verious services crossing the path of the pipeline, a AutoCad co-ordinated drawing has been provided. # 4.3 Sheet 4 & 5 The images above shows that there are verious services crossing the path of the pipeline, a AutoCad co-ordinated drawing has been provided. #### **Sheet 5 & 6** 4.4 The images above shows that there are verious services crossing the path of the pipeline, a AutoCad co-ordinated drawing has been provided. # 4.5 Sheet 7 & 8 The images above shows that there are verious services crossing the path of the pipeline, a AutoCad co-ordinated drawing has been provided. ## 4.6 Sheet 9 The images above shows that there are verious services crossing the path of the pipeline, a AutoCad co-ordinated drawing has been provided. ## 4.7 Sheet 10 The images above shows that there are verious services crossing the path of the pipeline, a AutoCad co-ordinated drawing has been provided. ### **CONCLUSION** As per our scope of work Nyeleti Consulting - forensic department scanned various parts of the 5.3 km pipeline situated on the North-Eastern side of Johannesburg in Region E. The proposed pipeline route will be from Marlboro to Woodmead and will be constructed predominantly along Western Services Road. Nyeleti consulting found various underground services at various depths crossing the proposed route and have indicated so on the layout plans with-in this report and have issues an AutoCad co-ordinated drawing
showing this. Prince Moyo Power Delivery Engineering Senior Manager Eskom Megawatt Park, Sunning hill Date: **Enquiries:** Brenda Morrison Tel +27 11 629 5266 # AUTHORISATION OF - 240-66418968 - GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF PIPELINES AND POWER LINES This letter will serve as proof that this document has been authorized without going for review comments. The following subject matter experts did see the document: - Arthur Burger - Bharat Haridas - Bart Druif ### **Motivation:** To ensure the documents included in the following schedule are in date and are in the current format. Any prospective future content changes will complete by the custodian and routed through the standard process. Yours sincerely Bongi Teti **Senior Advisor Engineering** Functional Responsible: Riaz Vajeth Senior Manager: LES Compiler: AABurger 15 January 2021 Arthur Burger Chief Engineer Authorized: 25 January 2021 Prince Moyo General Manager: PDE ### Guideline **Technology** Title: **GUIDELINE ON THE** ELECTRICAL CO-ORDINATION OF PIPELINES AND POWER **LINES** Unique Identifier: 240-66418968 Alternative Reference Number: <n/a> Area of Applicability: **Engineering** Documentation Type: Guideline Revision: 1 Total Pages: 96 Next Review Date: May 2020 Disclosure Classification: **Controlled Disclosure** Compiled by **Bart Druif** Consultant Approved by **Bharat Haridass** Engineer Authorized by **Arthur Burger** **Chief Engineer - Electrical** Date: 22/04/2015 ח Date: 24/04/2015 Date: 24/04/2015 Supported by SCOT/SC Riaz Vajeth SCOT/SC Chairperson Date: 24/4/2015 PCM Reference: 010-120 SCOT Study Committee Number/Name: Overhead Lines # GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF PIPELINES AND POWER LINES Unique Identifier: 240-66418968 Revision: 1 Page: 2 of 96 ### Content | | | | | Page | |----|-------|---------------|--|------| | 1. | Intro | duction | | 5 | | 2. | Supp | orting clause | PS | 5 | | | 2.1 | Scope | | 5 | | | | 2.1.1 Purp | oose | 6 | | | | 2.1.2 App | licability | 6 | | | 2.2 | | nformative references | | | | | | mative | | | | | | mative | | | | 2.3 | | | | | | | | eral | | | | | | losure classification | | | | 2.4 | | NS | | | | 2.5 | | esponsibilities | | | | 2.6 | | monitoring | | | | 2.7 | - | porting documents | | | 3. | The | | ordination of Pipelines and Power Lines | | | | 3.1 | • | d Utility Requirements | | | | | | licable legislation | | | | | | evant statutory requirements | | | | | | y requirements for pipeline installations in Eskom's servitudes | | | | 3.2 | | | | | | | | ordination | | | | | | cedure for obtaining approval for new installations | | | | 0.0 | | t of mitigation, protection and maintenance measures | | | | 3.3 | | nits | | | | | • | in of safety limits | | | | | | tact scenarios | | | | | | ts relating to danger during fault conditions | | | | | | ts relating to danger during steady state conditionsts relating to damage of pipeline coatings | | | | | | ts relating to damage of pipeline coatingsts relating to damage of cathodic protection equipment | | | | | | ts relating to a.c. induced pipeline corrosion | | | | | | ts relating to d.c. leakage from pipelines and anode ground beds | | | | 3.4 | | t of the possible hazardous nature of an exposure | | | | 0.4 | | a gathering | | | | | | blishing Zones of Influence | | | | 3.5 | | vity Measurements | | | | 0.0 | | eral background | | | | | | surement methods | | | | | | ection of measurement sites | | | | | | surement precautions | | | | 3.6 | | of pipeline voltages | | | | | | eral | | | | | 3.6.2 Soft | ware packages | 34 | | | | | cing currents on a.c. power lines | | | | | | | | # GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF PIPELINES AND POWER LINES Revision: 1 Unique Identifier: 240-66418968 Page: 3 of 96 | | | | <u> </u> | | | | |-----|--------|----------------|--|----|--|--| | | | 3.6.4 | Inducing currents on HVDC power lines | | | | | | | 3.6.5 | Pipeline coating resistivity | | | | | | | 3.6.6
3.6.7 | Calculation of inductive coupling during a power system earth fault | | | | | | | 3.6.8 | Calculation of conductive coupling from towers and substation earthing grids | | | | | | | 3.6.9 | Determination of the most likely locations of pipeline voltage peaks | | | | | | | | Calculation of d.c. leakage from pipelines and anode ground beds | | | | | | | | Calculation of pipeline voltages with mitigation measures applied | | | | | | | | Determination of current rating of d.c. decoupling devices, SPDs and cables | | | | | | 3.7 | Mitigat | ion measures | 50 | | | | | | 3.7.1 | Mitigation measures applicable to pipelines | 50 | | | | | | 3.7.2 | Mitigation measures applicable to power lines | | | | | | 3.8 | | orking procedures in power line servitudes | | | | | | | 3.8.1 | Appointment of Electrical Safety Officer (ESO) | | | | | | | 3.8.2 | General Safe Working procedures | | | | | | | 3.8.3 | Daily measurements | | | | | | | 3.8.4
3.8.5 | Temporary earthing Bonding of isolating flanges, joints and couplings | | | | | | | 3.8.6 | Precautions during coating and lowering-in operations | | | | | | | 3.8.7 | Work stoppage | | | | | | 3.9 | | tion and testing and of pipeline a.c. mitigation components prior to commissioning | | | | | | 3.10 | • | erm maintenance requirements of pipeline and power line a.c. mitigation components. | | | | | 4. | Auth | orizatio | ٦ | 58 | | | | 5. | Revi | visions | | | | | | 6. | Deve | elopmer | ıt team | 59 | | | | 7. | Ackr | owledg | ements | 59 | | | | Anı | nex A | – Checl | clists of particulars required | 61 | | | | Anı | nex B | – Speci | fication of Mitigation Components | 65 | | | | Anı | nex C | – Work | ed Example | 71 | | | | Anı | nex D | – Flowd | hart | 89 | | | | Anı | nex E | – Inspe | ction sheet for a.c. mitigation components and servitude works | 93 | | | | Fig | ures | | | | | | | Fig | ure 1: | | contact scenarios with an energised pipeline and resulting body currents due to step | 17 | | | | Fig | ure 2: | | f influence for inductive coupling | | | | | | | | re length L _p for crossings and non-parallel exposures | | | | | | | | tion distance vs. exposure length for urban and rural overhead lines | | | | | Fig | ure 5: | Separa | tion distance vs. exposure length for urban power lines | 26 | | | | Fig | ure 6: | Zone o | f influence for conductive coupling | 27 | | | | | | | le of apparent resistivity graph and calculated soil layers | | | | | Fig | ure 8: | Examp | le of sliding fault current vs. tower number, 220 kV line | 38 | | | | Fig | ure 9: | Examp | le of current distribution for a 15 kA fault on the 10th tower of a 132 kV line | 39 | | | # GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 4 of 96 | Figure 10: Calculation of electrode current, I _E , with a fault inside a substation | 40 | |---|----| | Figure 11: Calculation of electrode current, I _E , with a fault outside a substation | 41 | | Figure 12: Finding the worst fault position location on arbitrary exposures | 42 | | Figure 13: Touch voltage resulting from conductive coupling from a faulted tower | 45 | | Figure 14: Voltage developed on uniformly exposed pipelines with no earthing | 46 | | Figure 15: Location of voltage peaks on non-uniform exposure pipeline with no earthing | 47 | | Figure 16: Example of the reduction of touch voltages by zinc ribbon installed in pipeline trench | 48 | | Figure 17: Touch voltage resulting from conductive coupling from a faulted tower, with zinc ribbon installed near the faulted tower or grid | 49 | | Tables | | | Table 1: Limiting values for induced pipeline touch and step voltage during faults | 19 | | Table 2: Typical fault duration on Eskom power lines | 20 | | Table 3: Approximate values of screening factors for inductive coupling | 24 | | Table 4: Zone of influence for conductive coupling from substation earthing grids (0.2 sec fault duration) . | 27 | | Table 5: Zone of influence for conductive coupling from power line towers (0.2 sec fault duration) | 28 | | Table 6: Zone of influence for d.c. leakage (1 m ø pipe, diagonal crossing, 400 m span) | 30 | | Table 7: Wenner soil resistivity soundings for inductive coupling studies | 31 | | Table 8: Wenner soil resistivity soundings for conductive coupling studies | 32 | | Table 9: Wenner soil resistivity sounding for soil corrosivity studies | 32 | | Table 10: Standard Eskom overhead conductor ratings (50°C) | 36 | | Table 11: Nominal tower footing resistance (maximum) | 39 | | Table 12: d.c. resistance of standard Eskom earth wires | 39 | | Table 13: Typical variation of coating resistivity and thickness | 43 | | Table 14: Earthing resistance provided by gradient control wire, buried 2 m deep | 51 | | Table 15: Minimum vertical clearance underneath power line conductors | 56 | GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 5 of 96 #### 1. Introduction As is the case in a number of other countries, increased urbanization in South Africa has been accompanied by an increasing number of applications by pipeline operators (water, gas, petroleum) to use the existing power line servitudes. These servitudes are particularly important to pipeline planners in urban areas where there may be few viable alternatives, but also in rural areas where the long tracts of land provided by power line servitudes are increasingly valued by pipeline operators. At the same time, the number of situations is on the increase where new power lines have to be installed next to existing pipelines. When pipelines are located in (or cross) power line servitudes, there are a number
of important issues to consider by both the electrical utility and the pipeline operators. During a power line fault, very high voltages can be induced in the pipeline, which can damage the cathodic protection systems and rupture the coating, and present a significant safety hazard for maintenance personnel. During normal operation the induced pipeline voltages are lower, but could still present a safety hazard due to the extended duration, and can result in accelerated corrosion of the pipeline. From Eskom's perspective, an additional concern is that the d.c. potentials of the pipeline's cathodic protection system can produce leakage currents on power line structures resulting in electrolytic corrosion. This can generally be circumvented by insulating the earth wires of the pylons near pipelines. Though effective, this measure has cost implications for the utility and can, in the case of long parallelisms, present a safety hazard for live line workers and OPGW maintenance personnel if not carefully managed. Internationally, safety and mitigation measures have been developed to cater for the co-use of power line servitudes by virtually all types of pipelines, as reflected in a number of IEEE, IEC, CEN, NACE and national standards. In South Africa however, there has been no local standard or guideline available to comprehensively deal with these issues, neither are there specific voltage (or current) limits recommended or regulated. This has led to either over- or under-design of mitigation measures, resulting in cases of damaged pipelines, corroded power line towers and earth wires, and electrical shocks experienced by maintenance personnel on both power line and pipeline infrastructure. To address this issue, a SABS working group was established during 2010 representing the local electricity supply, pipeline and cathodic protection industries, with the objective of developing a standard or guideline. Due to the time scale involved in drafting SANS documents however, Eskom's Line Engineering Services proposed to develop an in-house guideline to address the immediate needs. This guideline can then be submitted to the SABS for possible use in the new SANS document. ### 2. Supporting clauses ### 2.1 Scope This Guideline addresses safety and interference issues arising from electrical coupling between a.c. or d.c. power lines and pipelines. It is applicable when pipelines cross power line servitudes, when pipelines and power lines share the same servitudes or when pipelines and power lines are installed in adjacent servitudes. Capacitive, inductive and conductive coupling modes are considered during normal load and fault conditions, for overhead lines or underground cables coupling with pipelines above or below ground, when the phase-to-phase voltage exceeds 40 kV r.m.s. on overhead lines, or 10 kV r.m.s. on cables. This Guideline provides interference limits, guidance on the calculation and measurement of coupling levels, protection and mitigation methods, safe installation practices in power line servitudes as well as the coordination and management procedures required between the respective authorities. ### **GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF** **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 6 of 96 ### 2.1.1 Purpose Eskom's power lines and bulk pipelines often compete for the same land space (servitudes). In some cases, where the power lines already exist, a new pipeline can impact the existing power lines plus any additional power lines that are planned. In the opposite situation, where a pipeline(s) exist, new power lines may have an impact on the pipeline(s). This document is aimed at setting up the framework that describes how the impacts are calculated and dealt with in either of these situations. ### 2.1.2 Applicability This document shall apply throughout Eskom Holdings Limited Divisions whenever a pipeline and power line interaction is identified (covering existing and all planned future infrastructure). #### 2.2 Normative/informative references Parties using this document shall apply the most recent edition of the documents listed in the following paragraphs. #### 2.2.1 Normative - [1] ISO 9001 Quality Management Systems. - [2] IEC 60050-161, International electrotechnical vocabulary. Chapter 161: Electromagnetic compatibility - [3] Electricity Regulation Act - [4] Occupational Health and Safety Act - [5] SANS 10280, Overhead Power Lines for conditions prevailing in South Africa, Part 1: Safety - [6] SANS 10142-1, The wiring of Premises, Part 1 : Low voltage Installations #### 2.2.2 Informative - [7] TST 41 321, Transmission Standard, Earthing Transmission Towers - [8] TPC 41-1078, Procedure for the approval of work there Eskom Tx Rights may be encroached or its assets placed at risk - [9] DGL 34-363, Guide for co-use of Eskom Servitudes, Restriction Areas and Assets - [10] DGL 34-600, Building line restrictions, Servitude Widths, Line Separations and Clearances from power lines - [11] SANS 50162:2010, Protection against corrosion by stray current from direct current systems - [12] SANS 61643-1:2006, Low-voltage surge protective devices, Part 1: Surge protective devices connected to low-voltage power distribution systems Requirements and tests - [13] DST 32-319, Determination of conductor ratings in Eskom - [14] CIGRE 95 36.02 : 1995, Guide on the influence of High Voltage AC Power Systems on Metallic Pipelines - [15] CIGRE 290 C4-2-02 : 2006, AC Corrosion on Metallic Pipelines due to Interference from AC Power Lines phenomenon, Modelling and Countermeasures - [16] ANSI/IEEE Std 80, IEEE Guide for Safety in AC Substation Grounding - [17] ANSI/IEEE Std 81, IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System Part 1: Normal Measurements # GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **7 of 96** - [18] IEC Std. 60479-1: Effects of current on human beings and livestock, Part 1- General aspects - [19] SANS 10199:2004, The design and installation of earth electrodes - [20] NRS084-2:2003: Electricity Supply Quality of Supply Part 2: Voltage characteristics, compatibility levels, limits and assessment methods - [21] CAN/CSA-C22.3 No. 6-M91: R2003, Principles and practices of electrical coordination between pipelines and electric supply lines - [22] AS/NZS 4853 : 2011, Electrical hazards on metallic pipelines - [23] prEN 15280, Evaluation of a.c. corrosion likelihood of buried pipelines applicable to cathodically protected pipelines" - [24] prEN 50443: 2009, Effects of electromagnetic interference on pipelines caused by high voltage a.c. railway systems and/or high voltage a.c. power supply systems - [25] NACE Standard RP0177: 2000, Mitigation of Alternating Current and Lightning Effects on Metallic Structures and Cathodic Protection Systems - [26] NACE Internal Publication 35110: 2010: AC Corrosion State-of-the-Art: Corrosion Rate, Mechanism, and Mitigation Requirements - [27] VON BAECKMANN W., SCHWENK W. et al, 1997, Handbook of Cathodic Corrosion Protection, 3rd Edition, Gulf Professional Publishing - [28] FRAZIER, M.J., 2001, Predicting Pipeline Damage from Powerline Faults, NACE Corrosion 2001, Paper No. 1595 - [29] CEA Report 239 T817, 1994, Powerline Ground Fault Effects on Pipelines, Prepared by Powertech Labs Inc. - [30] ITU-T Directives, R2005, Directives concerning the protection of telecommunication lines against harmful effects from electric power and electrified railway lines, Volume II Calculating induced voltages and currents in practical cases - [31] ITU-T Rec K68: 2006, Management of electromagnetic interference on telecommunication systems due to power systems - [32] SEALY-FISHER, V., WEBB N., 1999, Cahora Basa Power Line Interference Study, Technical Bulletin No. 12, SAECC/4/1 ### 2.3 Definitions ### 2.3.1 General For the purposes of this guideline, the terms, definitions and abbreviations given in IEC 60050-161 and the following apply: | Definition | Description | | |--|---|--| | anode ground bed an installation of conductors below the surface by which directly discharged into the earth in an impressed current cathodic protects | | | | appurtenance that which is connected to a pipeline, e.g. a valve in a pipeline | | | | auto-reclosure | action of the power line protection whereby the line is automatically re-
energised one or more times after tripping | | | balanced current exist when the phasor sum of the phase currents in a three phase equals zero | | | | bond a low impedance connection designed to maintain a common electric | | | # GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF PIPELINES AND POWER LINES Unique Identifier: 240-66418968 Revision: 1 Page: 8 of 96 | Definition | Description | | | |---|--|--|--| | coating stress | the difference in voltage potential between the pipeline wall and the surrounding soil at a given location | | | | counterpoise a conductor or system of conductors below ground, connected to the for of power line towers | | | | | d.c. decoupling device | a device used in electrical circuits that allows the flow of a.c. in both directions and prevents or
substantially inhibits the flow of d.c. | | | | d.c. potential shift | a potential developed between a metallic structure and the surrounding earth as a result of stray d.c. currents in the earth, which can result in electrolytic corrosion of the metallic structure | | | | dielectric breakdown potential | a voltage potential in excess of the rated voltage that causes the destruction of the coating or other insulating material | | | | discharge current | current that will flow if the conductor with induced voltage is connected to the earth via a zero impedance bond | | | | dead front | a type of construction in which the energized components are recessed or covered to preclude the possibility of accidental contact | | | | earth potential rise | the product of a earth electrode impedance, referenced to remote earth, and the current that flows through that electrode impedance | | | | earth resistivity measure of the electrical resistance of a unit volume of soil NOTE The commonly used unit is the ohm-meter, [Ω□m] whice impedance measured between opposite faces of a cubic meter of the electrical resistance of a unit volume of soil. | | | | | galvanic corrosion cell corrosion caused by dissimilar metals in an electrolyte | | | | | gradient control wire | one or two ribbons installed adjacent to and connected to a pipeline in order to reduce the pipeline coating stress | | | | gradient control mat | a system of bare conductors or ribbon on or below the earth's surface, so designed as to provide an area of equal potential within the range of step distances | | | | impressed current cathodic protection | a system whereby the cathodic protection current is applied using a d.c. rectifier, connected between the protected item and an anode ground bed | | | | remote earth | a location on earth that is far enough from the affecting structure that the soil potential gradients associated with the currents entering the earth from the affecting structure are insignificant | | | | residual current (or zero sequence current) Electrical current, that is equal to the phasor sum of the phase currents, returns through the earthing system of the power network NOTE When balanced current conditions exist, the residual current exists are conditions exists. | | | | | ribbon | a bare zinc or magnesium profiled conductor, specifically designed for gradient control | | | | right (or right-of-way) means the right to traverse or occupy land and includes inter alia ser surface right permits, way leaves, exercised options, licences and permit to occupy | | | | | sacrificial anode an anode that is attached to a metal object subject to electrolysis decomposed instead of the object | | | | # GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 9 of 96 | Definition | Description | | |-------------------------|--|--| | screening factor | a factor smaller than unity, by which an inducing quantity (current or voltage) may be multiplied to represent the reducing effect of a screening conductor | | | servitude | a right registered at the Registry of Deeds against the property title deed, binding against all the successors in title. | | | step voltage | the voltage difference between two points on the earth's surface separated by a distance of one pace, which is assumed to be 1 m, in the direction of the maximum voltage gradient | | | switching surge | the transient wave in an electrical system that results from the sudden change of current flow caused by the opening or closing of a circuit breaker | | | touch voltage | the voltage difference between a metal structure and a person in contact with the earth's surface or another metal structure | | | test post | a location at ground elevation above the pipeline where leads connected to the pipeline and/or pipeline coupons are accessible for the measurement of the voltage of the pipeline and/or the corrosion current | | | voltage limiting device | a protective device that normally presents a high impedance in an electrical circuit but presents a low impedance when its rated clamping or spark-over voltage is exceeded | | | zone of influence | area adjacent to a power line or installation in which inductive, capacitive or conductive coupling or a combination of them can produce harmful effects on a pipeline installation | | ### 2.3.2 Disclosure classification Controlled disclosure: controlled disclosure to external parties (either enforced by law, or discretionary). ### 2.4 Abbreviations | Abbreviation | Description | | |--------------|---|--| | ACSR | Aluminium Composite, Steel Reinforced | | | ARC | Auto reclose | | | СР | Cathodic Protection | | | CVES | Continuous Vertical Electrical Sounding | | | DCVG | Direct Current Voltage Gradient | | | DSR | Deep Soil Resistivity | | | Dx | Distribution (MV and HV) | | | EHV | Extra High Voltage (>132kV) | | | emf | electromotive force | | | EPR | Earth Potential Rise | | | ESI | Electricity Supply Industry | | | ESA | Electricity Supply Authority | | # GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **10 of 96** | Abbreviation | Description | | | |--------------|--|--|--| | ESO | Electrical Safety Officer | | | | GIS | Geographical Information System | | | | GMR | General Machinery Regulation | | | | HV | High Voltage (44kV to 132kV) | | | | ICCP | Impressed Current Cathodic Protection | | | | LV | Low Voltage (<1kV) | | | | MV | Medium Voltage (1kV to 33kV) | | | | NEC/R | neutral earthing compensator/resistor | | | | OHS | Occupational Health and Safety | | | | OPGW | optical ground wire | | | | ORHVS | Eskom operating regulations for high-voltage systems | | | | PILC | paper insulated, lead covered | | | | РО | Pipeline Operator | | | | PSS/E | power systems software simulator for engineering | | | | SA | sacrificial anode | | | | SCOT | Steering Committee of Technology | | | | SPD | surge protection device | | | | Tx | Transmission (EHV) | | | | TxSIS | Eskom Tx division's spatial information system | | | | VLD | Voltage limiting device | | | | XLPE | cross-linked polyethylene | | | | ZOI | Zone of influence | | | ### 2.5 Roles and responsibilities Eskom's Power Delivery group, which resorts under the Group Technology Commercial Division, participates in power line design and development work through guidelines and standards that are handled under SCOT. Within Power delivery, Line Engineering department is the main supplier of Tx line designs. However, throughout Dx offices countrywide, there are also designers at work doing Dx line designs and development work. Regardless of whether power lines are designed and developed by Tx or Dx offices, whenever there is a possibility for pipelines to run adjacent or cross one or more of the power lines, the designer must take cognisance of this guideline document. Land development departments in Tx and Dx should also take note of this document and involve the required engineering skills to advise them on the process (as set out in Annex A – required technical data and Annex D – flow diagram of the process to be followed towards approval of servitude rights and co-use) ### **GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF** **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **11 of 96** ### 2.6 Process for monitoring The electrical working group in the Overhead Lines study committee of SCOT will monitor this document and others that are related to power line design and operation. It will take place either under a working group or a care group depending in the needs identified. The SCOT focus is both on technical issues as well as operational issues that may require modifications or updates. Advances in pipe coatings and CP systems need to be monitored continuously to ensure that the technical impacts remain acceptable. The pipeline industry of South Africa as well as Eskom is keen to support the continued development of this document into a national standard through the NRS mechanisms. Through the formulation of this document, with inputs and interaction by the pipeline owners, Eskom has set the benchmark for what would be required from a power lines point of view when power lines and pipelines interact. The onus is still on the pipeline owners to agree on their requirements should a power line have an impact on already installed and operational pipelines. ### 2.7 Related/supporting documents Not applicable. ### 3. The Electrical Coordination of Pipelines and Power Lines ### 3.1 Statutory and Utility Requirements ### 3.1.1 Applicable legislation When a new electrical transmission or distribution scheme or extension to a scheme is considered in the vicinity of an existing pipeline, or when a new pipeline or extension of an existing pipeline is considered in the vicinity of an electricity transmission or distribution scheme, the following legislation is applicable in South Africa: - the OHS Act, 1993 (Act No. 85 of 1993) and its accompanying regulations, notably the Electrical Machinery Regulations, 2011 (GNR.250 published in Government Gazette 34154 of 25 March 2011), - b) the Electricity Regulation Act 4 of 2006. The OHS Act also has specific regulations for gas and petroleum pipelines related to the dangers posed by the transported medium (the Major Hazard Installation Regulations, section 43 of Act No 85), which are outside the scope of this document. #### 3.1.2 Relevant statutory requirements Relevant requirements, in the context of this guideline, from the legislation listed in 3.1.1 stipulate the following: - a) In terms of section 8(1) of the OHS Act,
POs and ESAs are obliged to provide and maintain safe working environments which include working environments where pipelines or works are under or in the vicinity of power lines. - b) In terms of the Electricity Regulation Act (Section 25), in the event of civil proceedings arising from damage or injury caused by induction, leakage or any other means of unwanted transmission of electricity, the ESA will be presumed to have been negligent unless it can prove otherwise. ### GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **12 of 96** c) The Electrical Machinery Regulations obliges POs and ESAs to conform to the safety clearances as set out in Regulation 15 in respect of overhead power lines, and it is necessary to define all electrical works and pipeline facilities to which safety clearances may be applicable and to agree on the safety clearances that must apply in each case. ### 3.1.3 Utility requirements for pipeline installations in Eskom's servitudes The minimum requirements for Eskom's servitudes are given in DGL 34-363 [9] for Dx lines, in TPC 41-1078 [8] for Tx lines and in DGL 34-600 [10] for both types of line, in addition to further requirements listed here. The specific requirements in the context of this document are: ### 3.1.3.1 Common requirements (Dx and Tx servitudes) - No work may commence unless Eskom has received the applicant's written acceptance of the conditions specified in the letter of consent. - b) The applicant or his / her contractor on site must at all times be in possession of the letter of consent. Should the site agent or contractor on site not be able to produce the required approval on inspection, all site activities will be stopped. - c) Eskom's rights and duties in the servitude shall be accepted as having prior right at all times and shall not be obstructed or interfered with. - d) Eskom's consent does not relieve the applicant from obtaining the necessary statutory, land owner or municipal approvals. The applicants are reminded that a power line servitude does not imply land ownership by Eskom. - e) Eskom shall at all times retain unobstructed access to and egress from its servitudes. - f) Pipelines shall not conflict with Eskom's future expansion plans in the servitude. - g) In general, parallel encroachments into the servitudes are limited to 2 (two) metres from the boundary of the servitude, to allow reasonable maintenance access to Eskom in the servitude. - h) Pipeline transitions from one side of the power line servitude to the other are not permitted without written approval. - i) The angle of all crossings should preferably be from 45 degrees to 90 degrees. - j) Venting and blow off valves on gas or petroleum pipelines shall be outside the power line servitude and be vented away from potential ignition sources. - k) Pipeline markers shall be installed at 10 m intervals (or as otherwise specified by Eskom) to indicate the location of underground pipelines. Markers shall indicate the owner of the pipeline and be concrete cast and resistant to vandalism. - Sufficient cover or pipe jacking shall be provided at servitude roads to prevent breakage by Eskom's vehicles and heavy equipment. - m) In case of a proposed above-ground pipeline, a bridge shall be provided to allow permanent Eskom access to the servitude. This bridge, if of conductive material, shall be earthed, but the earthing shall not be onto Eskom structures or within five metres of Eskom's own earthing. - At a pipeline crossing, corrosion-free sleeves must be installed at least 600 mm below undisturbed ground level to provide for future installation of Eskom cables. [The number and diameter shall be determined by the internal assessor] - The construction of new temporary or permanent metallic fences in power line servitudes can be extremely hazardous and is prohibited without written approval. - p) The use of explosives of any type within 500 metres of Eskom's services is prohibited without written approval. The application should be in accordance with DGL 34-364 for Dx lines and in TPC 41-1078 for Tx lines respectively. # GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 13 of 96 q) The pipeline voltages as a result of electrical coupling during normal and fault conditions on the power line(s) shall not exceed the respective values indicated in 3.3.3 and 3.3.4. - r) The stray d.c. voltages near power line structures as a result of ICCP systems shall not exceed the values indicated in 3.3.8. - s) Test posts shall use dead front construction in accordance with NACE RP0177. - t) It is required of applicants to familiarize themselves with all safety hazards related to Electrical plant. Safe working procedures shall be applied during construction (see 3.8). - u) The clearances between Eskom's live electrical equipment and the proposed construction work shall be observed as stipulated by Regulation 15 of the Electrical Machinery Regulations of the Occupational Health and Safety Act, 1993 (Act 85 of 1993) (see 3.8.2, table 15). - v) No mechanical equipment, including mechanical excavators or high lifting machinery, shall be used in the vicinity of Eskom's apparatus and/or services, without prior written permission having been granted by Eskom. If such permission is granted the applicant must give at least seven working days prior notice of the commencement of work. This allows time for arrangements to be made for supervision and/or precautionary instructions to be issued. The internal assessor must provide the applicant with the details of an Eskom person to be contacted in this regard. - w) Changes in ground level may not infringe statutory ground to conductor clearances or statutory visibility clearances. After any changes in ground level, the surface shall be rehabilitated and stabilised so as to prevent erosion. The measures taken shall be to Eskom's requirements. - x) Electrical installations on the pipeline for example the cathodic protection system, protection devices and electrical wiring shall comply with the applicable provisions in SANS 10142, and inspected and certified by a qualified installation electrician (or master installation electrician in case of hazardous locations). - y) Eskom shall not be liable for the death of or injury to any person or for the loss of or damage to any property whether as a result of the encroachment or of the use of the servitude area by the applicant, his/her agent, contractors, employees, successors in title, and assignees. - z) The PO shall indemnify Eskom in writing against loss, claims or damages including claims pertaining to consequential damages by third parties and whether as a result of damage to or interruption of service or interference with Eskom's services or apparatus or otherwise. Eskom shall not be held responsible for damage to the applicant's equipment. - aa) The PO's construction manager shall report any damage to Eskom's property, private property or public facilities, and the PO agrees to pay all expenses incurred in connection with the repair of such damages. ### 3.1.3.2 Further requirements for Tx servitudes - a) No excavations are permitted within 20 m of above-ground power line structures including towers, guy wires, anchors and other attachments. Exceptions may be permitted, subject to a case by case evaluation of the foundation and the soil conditions. - b) No above-ground buildings are permitted within the following distances of a Tx power line, measured from the centreline of the power line, as a function of the voltage level: i. 220 kV - 275 kV (delta): 18 m ii. 220 kV - 275 kV (horizontal): 23.5 m iii. 400 kV (self-supporting): 23.5 m iv. 400 kV (stayed) 27.5 m v. 765 kV 40 m ### **GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF** **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **14 of 96** #### 3.1.3.3 Further requirements for Dx servitudes a) No excavations are permitted within 6 m of above-ground power line structures including towers, guy wires, anchors and other attachments. Where this cannot be achieved, or where there is a risk of a ruptured pipe eroding a tower foundation, the pipe section is to be placed in concrete. b) No above-ground buildings are permitted within the following distances of a Dx power line, measured from the centreline of the power line, as a function of the voltage level: i. all voltages below 22 kV: 9 m ii. 22 kV: 9 m iii. 33 kV - 88 kV: 11 m iv. 132 kV: 18 m ### 3.2 Co-ordination and Management Procedure #### 3.2.1 Co-ordination Good co-operation between Eskom and the POs is essential to ensure that all the co-ordination requirements are met. Both parties must ensure that adequate specialist skills are available to them, to enable professional assessment of the methods and measures used to prevent conditions which may be dangerous to employees concerned or to the public, or which may damage or degrade the pipeline or power line works. Co-ordination and service meetings between the specialists of the POs and Eskom should complement the formal meeting mentioned in 3.2.2 o), particularly in the case of long or complex exposures. When the servitude under consideration contains both Dx and Tx power lines, the co-operation must extend to both Eskom's Dx and Tx departments. It is emphasised that since the respective Land & Rights issues are under the management of separate offices, any approval granted by Eskom Dx does not automatically imply Eskom Tx approval, or vice versa. Further liaison between the specialists of the respective parties is recommended through the forum of the SAECC. The preferred arrangement is that an SAECC working group is established with the responsibility of sharing information and developing skills in respect of electrical coupling between power lines and pipelines, including the training of safety officers. ###
3.2.2 Procedure for obtaining approval for new installations When a new pipeline is planned that involves any construction in Eskom's servitudes, the following steps are required towards approval of the right of way (flow chart provided in Annex D): - a) the PO's right of way application (annex A of TPC41-1078 for Tx servitudes, or annex A of DLG 34-363 for Dx servitudes, or both in case of combined Tx/Dx servitudes) along with the pipeline design details according to checklist A.1 of Annex A, is completed and submitted to Eskom's regional office for attention of Land and Rights, at least six months prior to planned commencement of the project, - b) the application is checked for completeness, registered on the system (Investigations_ logbook.xls) and assigned a Senior Advisor: Investigations and Audit (Tx) or to an Internal Assessor (Dx), according to the procedures described respectively in TP C41-1078 and DLG 34-363, - c) the Senior Advisor or Internal Assessor examines the application and identifies the affected Tx and Dx power lines or cables on TxSIS GIS, and captures this information using the template A.2 in Annex A, # GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 15 of 96 d) the Senior Advisor or Internal Assessor query the Manager: Land Management and Grid Planning if any future power lines or cables will be affected by the application in a 20 year window, and also captures this information, - e) the Senior Advisor or Internal Assessor prepares maps or .kmz or .dxf files clearly indicating the routes of all the affected power lines or cables as well as other infrastructure in the area of interest, - f) the Senior Advisor or Internal Assessor updates TxSIS GIS with the pipeline ID and route and also forwards this information to the SCOT committee (for attention: SCOT chairperson), - g) the Senior Advisor or Internal Assessor next forwards the application with the power line route maps to Eskom's Engineering Services, who performs an assessment of the ZOI (Zone of Influence) for the various coupling modes, using the information obtained in steps a) e) and following the method discussed under 3.4, - h) if the exposure or crossing is benign, the application is returned to the Senior Advisor or Internal Assessor for further processing and subsequent approval or otherwise according to the procedure described respectively in TP C41-1078 (Tx) or DLG 34-363 (Dx), but noting that if any construction work is to be done in a power line servitude, the safe working procedures of 3.8 are applicable, - i) if the pipeline falls within the ZOI of inductive and/or conductive coupling, or if the power line or any substations fall inside the ZOI of the pipeline's CP system, the exposure is regarded as possibly hazardous and a detailed coupling study is required for the respective coupling mode(s), - j) the design details of the relevant power lines or cables are then obtained from Lines Engineering and Grid Planning, taking network expansion for a 20 year period into account, using the checklist A.3 in Annex A. - k) next Eskom's Engineering Services performs a PSS/E or similar analysis to calculate the network impedances and fault current levels for the power lines or cables in question, using the checklist A.4 in Annex A, using case files 20 years ahead, - the list of possibly hazardous coupling modes and all the relevant power system data (from checklists A.2, A.3 and A.4) is forwarded to the PO. - m) the PO designs the a.c. mitigation based on this data, according to the methods indicated in 3.7 and elsewhere in this guideline, and submits a proposal to the Senior Advisor who submits same to Eskom's Engineering Services, - n) if necessary, Eskom's Engineering Services initiates and proceeds with a project to asses the suitability of the a.c. mitigation measures proposed by the PO. - a co-ordination meeting is held between Eskom's Engineering Services and the PO to reach agreement on designs that will ensure that the coupling limits will not be exceeded and to discuss the necessary clearances and safety procedures to be observed, - p) Eskom's Engineering Services initiates a project (in Eskom Construction Department) to isolate the power line's earth wires as may be required in terms of TST 41 321 or as indicated by the conductive coupling analysis, - q) the application is returned to the Senior Advisor for further processing and approval subject to the agreed design, according to the procedure described in the right of way application, TP C41-1078, - r) before construction starts, the PO appoints an Electrical Safety Officer (ESO), who is to be responsible for maintaining safe working conditions in the servitude and adjacent to the servitude for the duration of the works (see 3.8), - s) during construction, the ESO maintains contact with Eskom and permits inspections by Eskom representatives to ensure that all conditions are met and the required clearances are adhered to, - t) the ESO keeps a written record of all voltage measurements, safety-related incidents and accidents during construction, exposed underground infrastructure such as counterpoises or cables and any damage to Eskom's power line structures, and submits this information to Eskom, ### GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **16 of 96** u) upon completion of the pipeline works and surface restoration, an Eskom representative performs an inspection of all a.c. mitigation measures, the pipeline markers, any damage to power line structures and the quality of the surface restoration (see 3.9 and checklist in Annex E), - if so agreed upon by the parties, measurements are performed at this stage to determine if the d.c. potential shift at selected pylons or earth mats, resulting from switching the CP system on and off, is within the required limits, - w) providing the outcome of steps u) and v) is positive, the final approval for the commissioning of the installation is granted (see 3.9). When a new power line or installation is planned in an existing pipeline servitude, essentially the same procedure is followed; in this case initiated by Eskom, and subsequently inspected and approved by the PO. ### 3.2.3 Cost of mitigation, protection and maintenance measures In the case of new works, the cost of the agreed upon measures shall be borne by the party initiating the new installation. This includes the cost of any modification required to the existing works belonging to the owner of the servitude. In the case of a pipeline application in existing power line servitude this would include, for example, the cost of isolating the power line's earth wires. In the case of a new power line influencing an existing pipeline, this would include the cost of all the a.c. mitigation measures required. The owner of the servitude shall further be entitled to recuperate from the applicant the cost of the assessment described in 3.4, the cost of the modelling exercise described in 3.6, the cost of inspections and if damage occurred, the cost of any repairs to the existing works. In the case of induction problems arising on existing installations, the cost shall be borne by the party on whose installation the protection or mitigation measures are implemented. In the case of a benign co-location becoming hazardous as a result of a power line upgrade or an increase in the level of cathodic protection used on the pipeline, the cost shall be borne by the party who was granted permission for co-use of the servitude by the owner. In the case of there being no registered servitude owner yet at the time that the co-location is planned, each party shall be responsible for the cost of the measures on their own equipment, whilst the cost of the assessment and modelling exercise shall be equally shared. In all cases, each party is responsible for the cost of maintaining the integrity of their own equipment including attachments, insulation and earthing. ### 3.3 Coupling Limits #### 3.3.1 Origin of safety limits Safe limits of step and touch voltages are based on the maximum body current that can be endured by a person without affecting muscular control or causing ventricular fibrillation. The standards IEEE 80 and IEC 60479-1 provide safety criteria based on the fibrillation current derived from empirical studies. The safety limits used here for fault conditions are adopted from the IEC standard, which is based on more recent research. The fibrillation current curve C1 is used, representing 95% of the population (see Fig 20 in IEC 60479-1). For pipeline sections exposed to the general public, the worst-case condition considered is where both hands are in contact with the pipeline and both feet in contact with the earth. No reduction factor for footwear is applied, as some pipelines may be accessible to bare-footed children, for example. For pipeline sections accessible only by authorised personnel, the worst condition considered is likewise where both hands are in contact with the pipeline and both feet with the earth, but footwear is accounted for with a conservative resistance of 1000 ohm. ### **GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF** **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **17 of 96** The safety limits for steady state conditions are based on a 10 mA r.m.s. body current, which is the maximum safe let-go current for adult men. For pipelines or sections of the pipeline exposed to the public including children, the maximum let-go current is reduced to 5 mA r.m.s. The hand-to-hand or hand-to-foot resistance is considered to be equal to or higher than 1 500 ohm, a reasonably safe assumption when touch voltages remain within the limits required (see Table 1, IEC 60479-1). #### 3.3.2 Contact scenarios Some typical contact scenarios with an energised pipeline and the resultant body
current paths are depicted in Fig1 (a)-(c). #### (a) at partially buried valve chambers #### (b) at above-ground appurtenances Figure 1 – Typical contact scenarios with an energised pipeline and resulting body currents due to step and touch potentials (contd../) ### **GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF** **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 18 of 96 ### (c) across insulating flanges and to separate earths Figure 1 (contd.) – Typical contact scenarios with an energised pipeline and resulting body currents due to step and touch potentials Inside valve chambers, direct contact with the pipeline is possible, and the current path can be through the wall or the floor (see Fig 1 (a)). Outside the valve chambers, indirect touch potentials can occur through the chamber roof and walls. Step potentials can result from the voltage gradient around the chamber or the above-ground appurtenance (see Fig 1 (b)). In the case of pipelines installed on plinths above ground, direct touch potentials are possible to local earths, to foreign earths or across insulating flanges (see Fig 1 (c)). ### 3.3.3 Limits relating to danger during fault conditions In the event of an earth fault on the power line(s), the touch and step voltages with respect to local earth at any accessible section of the pipeline shall not exceed the values given in Table 1, for public and occupational exposure respectively. For most pipelines the occupational exposure limits will be applicable. The public exposure limits are only applicable for above - ground pipelines or appurtenances that are not protected from public access. # GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 19 of 96 Table 1: Limiting values for induced pipeline touch and step voltage during faults | Exposure | Fault duration ¹⁾ , t | Maximum touch (T) and step (S) voltages for different surface layers: [V r.m.s.] | | | |----------------------|----------------------------------|--|--|---| | | | Natural soil or concrete slab ²⁾ | 15-20 cm crushed stone layer ²⁾ | 15-20 cm asphalt
layer ²⁾ | | | t ≤ 0,1 | 170 (T)
220 (S) | 570 (T)
1 800 (S) | 4 300 (T)
> 5 000 (S) | | | 0,1 < t ≤ 0,2 | 160 (T)
200 (S) | 510 (T)
1 600 (S) | 3 800 (T)
> 5 000 (S) | | General public | 0,2 < t ≤ 0,5 | 60 (T)
70 (S) | 170 (T)
510 (S) | 1 200 (T)
4 600 (S) | | | 0,5 < t ≤ 1,0 | 34 (T)
40 (S) | 90 (T)
260 (S) | 600 (T)
2 300 (S) | | | 1,0 < t ≤ 20 | 26 (T)
32 (S) | 70 (T)
200 (S) | 450 (T)
1 700 (S) | | | t ≤ 0,1 | 340 (T)
900 (S) | 820 (T)
2 600 (S) | 4 500 (T)
> 5 000 (S) | | | 0,1 < t ≤ 0,2 | 300 (T)
800 (S) | 730 (T)
2 300 (S) | 4 000 (T)
> 5 000 (S) | | Authorised personnel | 0,2 < t ≤ 0,5 | 105 (T)
260 (S) | 240 (T)
720 (S) | 1 250 (T)
4 800 (S) | | | 0,5 < t ≤ 1,0 | 60 (T)
135 (S) | 130 (T)
370 (S) | 640 (T)
2 400 (S) | | | 1,0 < t ≤ 20 | 45 (T)
110 (S) | 95 (T)
270 (S) | 460 (T)
1 800 (S) | #### Notes: The benefit of a protective surface layer is evident from Table 1. Asphalt in particular exhibits a very high soil resistivity. Concrete slab (and also soilcrete, i.e. backfill mixed with cement) on the other hand, is a very poor insulator, due do the hygroscopic nature of cement. The fault duration on Eskom lines of usual construction is given in Table 2. In accordance with IEEE 80, the cumulative fault duration should be applied taking account of the auto-reclosures. ¹⁾ Use the cumulative fault duration of the maximum number of reclosures. Assumed resistivity of natural soil or concrete slab: 30 ohm.m, crushed stone: 1000 ohm.m, asphalt: 10 000 ohm.m; all under wet conditions, ref. IEEE 80. GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 20 of 96 Table 2: Typical fault duration on Eskom power lines | Voltage level | Maximum fault
duration
[s] | Total number of successive trips 1) | Cumulative fault
duration
[s] | Backup protection
duration ²⁾
[s] | |-----------------------------|--|-------------------------------------|--|--| | 11 kV – 33 kV ³⁾ | 4.0 | 5 | 20 | 20 | | 44 kV – 132 kV | with teleprotection: 0.1 with stepped-distance protection 4): 0.5 | 2 | with teleprotection: 0.2 with stepped-distance protection ⁴⁾ : 0.5 | 0.8 ⁵⁾ | | 220 kV – 765 kV | 0.1 | 2 | 0.2 | 0.8 ⁵⁾ | #### Notes: - 1) Trips in quick succession with auto-reclose, excluding controlled closure after ARC lock-out - Apply backup protection times only for pipelines continuously and frequently exposed to the general public, e.g. above-ground pipelines in public walkways - 3) Eskom's MV circuits are earthed with NEC/Rs which limit the earth fault current to 360 A - 4) This value applies only to the last 20% of the line, which uses Zone 2 protection and does not auto-reclose. Between 20% and 80% of the line, the fault will be cleared within 0.1 sec by Zone 1 from both ends - 5) This applies to Zone 3 protection. High impedance faults (Zfault > 20 ohm) may take 1 sec or longer to clear, but have a reduced fault current ### 3.3.4 Limits relating to danger during steady state conditions During worst case conditions on the power line(s), the touch voltage of the pipeline and its appurtenances shall not exceed: - a) 15 V r.m.s. at pipeline sections exposed only to authorised personnel, - b) 7.5 V r.m.s at pipeline sections exposed to the general public. Worst case conditions shall take into consideration the emergency load current, the phase current unbalance, effects of multiple circuits and planned expansion or upgrade of the power network. For most pipelines the 15 V r.m.s. limit will be applicable. The 7.5 V r.m.s. limit is only applicable for above - ground pipelines or appurtenances that are not protected from public access. The locations on the pipeline where the voltage peaks will most likely occur are discussed in 3.6.9. ### 3.3.5 Limits relating to damage of pipeline coatings The maximum permissible pipeline coating voltage stress is dependant on the dielectric strength of the coating material and the method used to cover field joints. Bitumen can experience glow and arc discharges for coating stress above 1 000 V r.m.s., limiting the maximum permissible value for bitumen-based coatings to about 900 V r.m.s., irrespective of coating thickness. Polyurethane -, epoxy - and polyethylene - based coatings of normal thickness can tolerate voltages in excess of 10 000 V r.m.s., although the coating stress is generally limited to around 5 000 V r.m.s., to take future deterioration and the effect of field joints into account. For these coatings, the dielectric breakdown strength increases with coating thickness. The respective value, to be established in consultation with the PO, shall be applied during worst case fault conditions (see 3.6.3.3). ### GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 21 of 96 ### 3.3.6 Limits relating to damage of cathodic protection equipment The full induced a.c. voltage (i.e. without any localised mitigation) will appear across the CP rectifier during an earth fault. With proper design, this voltage will not exceed the maximum permissible coating stress. The CP rectifier must hence be capable of withstanding the maximum coating stress voltage (see 3.3.5) for the duration of a fault cleared by the backup protection system (see Table 2). The full induced steady state a.c. voltage will also appear across the CP rectifier and can be converted to a d.c. voltage, which can increase the ground bed d.c. current. The resultant increase in anode ground bed consumption needs to be taken into account during the ground bed design. The CP equipment will further be vulnerable to lightning and switching surges through its power supply, in addition to possible transients from nearby d.c. traction systems. For this reason, the transformer and rectifier are equipped with SPDs, typically rated as follows: Lightning current rating 8/20 µsec 40 kA Lightning impulse clamping voltage (min) 500 V Response time 25 ns Where surge levels are expected to exceed this rating, special precautions are required. ### 3.3.7 Limits relating to a.c. induced pipeline corrosion The induced voltage limit to prevent possible a.c. induced corrosion damage at pipeline coating defects has to be decided on by the PO, and is not enforceable by the ESA. Whilst the study of this phenomenon is ongoing, there is some evidence that for modern coatings in certain soils, a.c. induced corrosion is possible at voltage levels well below the safety limits of 3.3.4. Recommendations in this regard are given in CIGRE TB 290, CEN TS 15280 and NACE 35110. These documents suggest the following voltage and current density limits to significantly reduce a.c. corrosion likelihood, based on the practical experience of European operators: - a) 10 V r.m.s. and 100 A r.m.s./m² where the local soil resistivity exceeds 25 ohm.m - b) 4 V r.m.s. and 40 A r.m.s./m² where the local soil resistivity is less than 25 ohm.m The current density limits apply to the discharge current at a coating holiday. For a 1 cm² holiday, the current limit is 10 mA and 4 mA for a) and b) respectively. The voltage limits indicated will ensure that the current density limits are not exceeded. Unlike the safety limit, these limits are intended to be applied at accessible as well as inaccessible sections of the pipeline. Because a.c. corrosion is a long term process however,
it is only necessary that these limits are met during normal load conditions and not during short term, emergency load conditions on the inducing power line(s). ### 3.3.8 Limits relating to d.c. leakage from pipelines and anode ground beds In terms of earthing standard TST-41-321, all transmission line towers within 800 m of pipelines employing impressed current CP systems must have their earth wires isolated from the towers with suitable insulators, to prevent circulating d.c. currents. Where it can be shown however by proper measurement and/or modelling that the d.c. potential shift limits indicated in a) or b) below are not exceeded, or if the towers are cathodically protected, this requirement may be waived, in consultation with Eskom. ### GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **22 of 96** ### a) Leakage from pipelines With the pipeline at a negative potential, the adjacent soil will assume a negative potential through coating imperfections. Current can then be extracted from any earthed structure such as a power line tower, resulting in anodic interference (corrosion). To limit this effect, the maximum permissible positive d.c. potential shift with respect to the surrounding soil resulting from the CP system is (from Table 1, SANS 50162): maximum positive d.c. potential shift (resulting from pipeline leakage): 200 mV This is the limit applicable for a steel structure in a concrete foundation, and includes the IR - drop in the concrete surrounding the structure. It can be evaluated by toggling the CP system on and off whilst measuring the corresponding change in the structure's d.c. voltage, using a simple voltmeter and a reference electrode inserted into the soil next to the foundation. The maximum rated CP current should be applied to the pipeline during this test. A 200 mV d.c. potential shift can manifest itself at the tower footing of a power line when the d.c. voltage gradient exceeds 200 mV over the length of a single power line span. ### b) Leakage from anode ground beds to towers connected by earth wires Anode ground beds produce a localised positive d.c. voltage in the adjacent soil, which injects current into nearby earthed structures, resulting in cathodic interference (protection). Where this current exits the structure and re-enters the soil however, anodic interference (corrosion) occurs. When the power line's earth wires are directly connected to the towers, this return current is typically shared by a number of towers further away, before returning through the soil to the pipeline and back to the source. The requirement in this case is that the return currents at these remote towers will not produce a positive d.c. potential shift in excess of 200 mV. In view of this, post-installation measurements should be performed at all the towers where the current is expected to return to earth, to confirm that the 200 mV limit is met. Such measurements are required whenever the negative d.c. potential shift at the current entry point exceeds 200 mV, and should be made with the maximum rated current applied to the anode ground bed. ### Leakage from anode ground beds to isolated towers When anode ground beds are installed near power line towers (<500 m separation), the surface d.c. gradient across the individual legs or guy wire anchors can be large enough to cause corrosion even on isolated towers. The applicable limit in this case is: maximum positive d.c. potential shift (resulting from anode ground beds): 200 mV This d.c. potential shift can manifest when the surface d.c. voltage gradient exceeds 400 mV over the distance between the legs or guy anchors. When this limit is exceeded, the tower has to be protected with sacrificial anodes. ### 3.4 Assessment of the possible hazardous nature of an exposure #### 3.4.1 Data gathering A significant amount of information concerning the pipeline and the power line(s) is required to enable a detailed study of the safety and corrosion aspects that results from the various electrical coupling mechanisms. The required information is covered in the checklists A.1 – A.4 of Annex A. The step-by-step procedure for obtaining this information is provided in 3.2.2. Various sign-off areas are included in the checklists for each of the contributors to sign off before passing it on to the next step. # GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 23 of 96 Only the information covered in checklists A.1 and A.2 of Annex A is required to determine the Zones of Influence (ZOIs) for the different coupling mechanisms, as outlined in 3.4.2. If no soil data is provided, a conservative value for deep soil resistivity of 1 000 ohm.m should be used for determining the ZOI for inductive coupling (see 3.4.2.1), or a surface resistivity of 5 000 ohm.m for determining the ZOIs for conductive coupling and d.c. coupling from the CP system (see 3.4.2.2, 3.4.2.4). When the pipeline is found to be within one of the ZOIs of the power line, the corresponding information of checklists A.3 and A.4 is also required. Measurement of soil resistivity then becomes essential, as outlined in 3.5. ### 3.4.2 Establishing Zones of Influence ### 3.4.2.1 ZOI from overhead power lines and cables due to inductive coupling This ZOI is determined by the distance between the centre of the power line and a parallel pipeline beyond which, the voltage developed on the pipeline cannot exceed a given limit. It is a function of the soil resistivity, the length of the exposure, the earth fault current level, the power system screening factors, the fault duration and the corresponding voltage limit. For this calculation, the pipeline is assumed to be completely isolated, with no leakage through its coating, and with no earthing or mitigation measures applied. The zone width a_i (applicable on both sides of the power line, see Fig 2) may be established for a specific situation from the equation: $$a_i = 110 \cdot \sqrt{\frac{\rho}{e^{v/L_p} - 1}}$$ [m] where: ρ is the soil resistivity (see 3.4.1), [ohm.m], L_n is the length of the exposure, projected onto the power line (see Fig 3), [km], and $V = \frac{64 \cdot V_{max}}{k_{II} \cdot k_{D} \cdot l_{f}}$ is a parameter calculated from the following values: V_{max}, the induced voltage limit for an earth fault, from Table 1, [V r.m.s.], k_u, the screening factor due to urban infrastructure, from ITU-T K.68 (see Table 3), k_p, the screening factor due the earth wires or the power cable sheath (see Table 3), If, the maximum phase-to-earth fault current level, [A r.m.s.]. Conversely, the maximum length L_p of an exposure with an average separation a_i is given by the equation: $$L_{p} = \frac{v}{\ln\left(\frac{12100 \cdot p}{a_{i}^{2}} + 1\right)}$$ [km] For pipelines crossing power lines at right angles, $L_p = 0$ and no inductive coupling occurs. For crossings at angles greater than 60° , inductive coupling remains very small and can be disregarded, provided the pipeline does not change direction towards the power line. # GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 24 of 96 Figure 2: Zone of influence for inductive coupling Figure 3: Exposure length Lp for crossings and non-parallel exposures Eqns (1) and (2) are applicable only for relatively short exposures, $L_p \le 20$ km for perfectly insulated pipelines. On practical lines with standard coatings, when L_p exceeds 20 km the coating leakage will prevent any further increase in the pipeline voltage, irrespective of the additional exposure length (see 3.6.9). Hence when $L_p > 20$ km, the value of a_i determined for $L_p = 20$ km may be applied. The zone width a_i calculated from Eqn (1) for some typical scenarios is shown in Figs 4 – 5. Table 3: Approximate values of screening factors for inductive coupling | Screening factor of | | | Screening factor | |---------------------|---------|---|------------------| | earth | wires o | f power lines | | | a) | singl | le earth wire | | | | • | ACSR, dc resistance < 0,5 Ω/km | 0,70 | | | • | 19/2.7 mm steel, dc resistance < 2,0 Ω/km | 0,90 | | | • | 7/3.51 mm steel, dc resistance < 3,0 Ω /km | 0,95 | | b) | doub | ble earth wire | | | | • | ACSR, dc resistance < 0,5 Ω/km | 0,55 | | | • | 19/2.7 mm steel, dc resistance < 2,0 Ω/km | 0,80 | | | • | 7/3.51 mm steel, dc resistance $< 3.0 \Omega/km$ | 0,85 | # GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF PIPELINES AND POWER LINES Unique Identifier: 240-66418968 Revision: 1 Page: **25 of 96** | | | Screening factor of | Screening factor | |--------|----------|---|------------------| | MV/H | IV cable | s (sheath cross section in mm ²) | | | a) | lead | sheath cable (PILC) | | | | • | 11 kV - 44 kV, 200 mm ² | 0,8 | | | • | 66 kV - 132 kV, 240 mm ² | 0,7 | | b) | alum | ninium sheath cable (XLPE) | | | | • | 11 kV - 44 kV, 200 mm ² | 0,3 | | | • | 66 kV - 132 kV, 240 mm ² | 0,2 | | infras | structur | e | | | a) | urban | environment (urban factor, k _u) | | | | • | soil resistivity 10 Ω .m – 150 Ω .m | 0,45 | | | • | soil resistivity 150 Ω .m – 1500 Ω .m | 0,35 | | | • | soil resistivity 1500 Ω .m – 10000 Ω .m | 0,25 | | b) | rural e | environment | 1,0 | Figure 4: Separation distance vs. exposure length for urban and rural overhead lines (10 kA earth fault, 0.2 sec duration) # GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF PIPELINES AND POWER LINES Unique Identifier: 240-66418968 Revision: 1 Page: **26 of 96** Figure 5: Separation distance vs. exposure length for urban power lines (10 kA earth fault on overhead line, 0.2 sec duration) (360 A earth fault on MV cable, 20 sec duration) ### 3.4.2.2 ZOI from substation earthing
grids and power lines due to conductive coupling #### a) Power arc A fault initiated by a lightning strike to a tower or overhead earth wires can produce a sustained arc between the tower footing or earthing grid and any coating defect on the pipeline, which can melt the pipeline steel and rupture the pipeline wall. From research performed by the Canadian Electricity Association and Powertech Labs (Inc), this can occur when the separation distance is smaller than S_{arc} given by the equation: $$S_{arc} = 0.1058 \cdot V - 0.0137$$ [m] Here V is the voltage of the tower or earthing grid during a fault, in kV r.m.s. Earthing grids are usually designed not to exceed 5 kV, and on towers with earth wires the voltage will rarely exceed 30 kV r.m.s. Adopting a maximum value of 40 kV r.m.s. to include any inductive coupling effect, yields the minimum allowable separation distance between pipelines and earthing grids or towers equipped with earth wires, to prevent a power arc: $$S_{arc} = 0.1058 \cdot 40 - 0.0137 = 4.22$$ [m] The voltage on towers without earth wires can exceed 40 kV r.m.s. during a fault and in this case, the full phase to earth voltage should be applied in Eqn. (3). GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **27 of 96** ### b) Earth potential rise It is also necessary to consider the safety aspect of the earth potential distribution around the faulted tower or grid during an earth fault. With the normal pipeline potential being close to the reference potential of remote earth (i.e. zero potential), the full EPR at the location of the pipeline is applied across its coating, or to a person in simultaneous contact with the pipeline and earth. The unsafe zone extends to a distance where the EPR has reduced to safe levels (see Fig 6). Figure 6: Zone of influence for conductive coupling The zone size is dependant on the magnitude of the fault current, the resistance of the earthing grid or tower footing, the resistivity of the soil, the fault duration and the corresponding voltage limit. Earth wires on power lines decrease the fault resistance which increases the fault current magnitude, but by distributing this current to multiple towers decrease the zone size for individual towers. Table 4: Zone of influence for conductive coupling from substation earthing grid (0.2 s fault duration) | Earthing grid dimensions m
and EPR assumed during a
fault | Zone distance d from edge of earthing grid [m] Exposure / environment | | | | | | |---|--|-------|-------|-------|--|--| | | | | | | | | | | urban | rural | urban | rural | | | | 10 m x 10 m
10 kV | 120 | 260 | 57 | 140 | | | | 30 m x 30 m
10 kV | 340 | 780 | 172 | 400 | | | | 50 m x 50 m
10 kV | 570 | 1 300 | 290 | 670 | | | | 200 m x 200 m
5 kV | 1 100 | 2 600 | 500 | 1 300 | | | | 500 m x 500 m
5 kV | 2 700 | 6 400 | 1 300 | 3 300 | | | ### GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **28 of 96** Table 5: Zone of influence for conductive coupling from power line towers (0.2 s fault duration) | Type of earth
wire(s) on power
line | Soil resistivity
[ohm.m] | Fault current
assumed
[kA] | Zone distance d from tower footing [m] | | | | | |---|-----------------------------|----------------------------------|--|----------|--|-------|--| | | | | Exposure / environment | | | | | | | | | General public
160 V r.m.s. limit | | Authorized personnel
300 V r.m.s. limit | | | | | | | urban | rural | urban | rural | | | none
(see note) | 50 | 0,36 | 10 | 20 | 6 | 13 | | | | 500 | 0,36 | 60 | 180 | 32 | 95 | | | | 5 000 | 0,03 | 80 | 300 | 38 | 152 | | | steel | 50 | 10 | 110 | 240 | 57 | 125 | | | | 500 | 10 | 160 | 460 | 82 | 230 | | | | 5 000 | 10 | 160 | 650 | 97 | 330 | | | ACSR | 50 | 10 | 40 | 80 | 20 | 44 | | | | 500 | 10 | 55 | 150 | 25 | 76 | | | | 5 000 | 10 | 55 | 220 | 32 | 114 | | | NOTE: Applicable to | MV power lines of | nly. | | <u>'</u> | | 1 | | The pre-calculated values of Table 4 should be applied for earthing grids of a.c. substations, and the pre-calculated values of Table 5 for power line poles, masts or towers. These values were calculated using ITU-T REC K.68 methodology. A touch voltage limit of 160 V r.m.s. and 300 V r.m.s. is used for public and authorized exposure respectively, as applicable for a 0.2 sec fault duration. For other voltage limits, the zone distances in Table 4 and Table 5 can be changed in direct proportion. For example, from Table 5, the zone distance d for a power line tower with steel earth wires in a rural area with 500 ohm.m soil is 460 m, for public exposure. Supposing that a fault duration of 0.5 seconds is applicable, the exposure limit is reduced from 160 V r.m.s. to 60 V r.m.s (see Table 1). The zone distance d then becomes: d = 460.160/60 = 1.227 m In the case of fault current levels other than those indicated in Table 5, the zone sizes are changed in a similar manner. Thus, for the example above, if the actual fault current level is not 10 kA but 5 kA, the zone distance d becomes: d = 1 227.5/10 = 614 m ### 3.4.2.3 ZOI from overhead power lines due to capacitive coupling Capacitive coupling is only of consequence for pipelines or sections of pipeline above ground and insulated from earth. Normally this is limited to construction activity, for example during lifting and lowering in operations of coated pipeline sections, or sections stored on skids. Underneath power lines, large electrostatic voltages can develop on such sections, which can discharge to earth through a person coming in contact with the section. # GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 29 of 96 The power – to – pipeline capacitance (and hence the energy transferred by this mechanism) is however very small, and when the safety distances (see 3.8) are observed, the discharge current limit for authorised personnel of 10 mA r.m.s. will not be exceeded for sections of normal length. Still, it could be discernable as a shock similar to that from electrostatic electricity, and could cause a secondary safety hazard if someone working on the pipeline overreacted to this sensation. Moreover, metal contact would produce a spark that could ignite a fuel vapour. For long, insulated pipelines installed above ground on plinths alongside or underneath power lines, the discharge current could reach 10 mA r.m.s. for lengths in excess of 200 m. This can however be readily mitigated by earthing; even a relatively high resistance earth (100 ohm - 200 ohm) will totally neutralize any capacitive coupling hazard. The zone of influence is in this case limited to the power line servitude. ### 3.4.2.4 ZOI from anode ground beds and pipelines due to d.c. leakage ### a) Anode ground beds For homogenous soil, the distance d, from an anode comprising a single horizontal or vertical conductor installed a coke backfill, beyond which the d.c. potential of the soil will be below the 200 mV limit may be calculated using the equation: $$d = 2.5 \cdot V_a \cdot (L_a)^{0.65}$$ [m] where: V_a is the maximum d.c. voltage applied to the anode [V], L_a is the length of the anode [m]. With the anode length adjusted according to soil resistivity, the distance d can vary from a few hundred metres in low resistivity soils to several kilometres in high resistivity soils, for typical CP current requirements. ### b) Pipelines Considering a semi-infinite, straight, ICCP - protected pipeline with evenly distributed coating defects, buried at 1 m depth in homogenous soil, the difference ΔU in the surface potential between two points, one separated by x [m] and one separated by x + s [m] from the pipeline for x \geq 1m, is given by Eqn (5): $$\Delta U = J \cdot \rho \cdot d \cdot \left[ln(x+s) - ln(x) \right]$$ [V] $$= J \cdot \rho \cdot d \cdot ln \left(\frac{x+s}{x} \right)$$ [V] where: - J is the protection current density, [A/m²], - ρ is the soil resistivity, [ohm.m], - d is the pipeline diameter, [m], - s is the span distance between subsequent towers, [m]. For a d.c. potential shift limit of 200 mV at the tower footing, the minimum potential difference ΔU over a full span is 200 mV. The resulting minimum lateral distance x to be applied for a power line with 400 m spans approaching the pipeline diagonally, is as indicated in Table 6, for a large-bore (1 m diameter) pipeline, as a function of protection current density and soil resistivity: ### GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **30 of 96** Table 6: Zone of influence for d.c. leakage (1 m ø pipe, diagonal crossing, 400 m span) | Zone distance from pipeline [m] for soil resistivity of | | | | | | |---|---|---|---|--|--| | 50 Ω.m | 500 Ω.m | 1000 Ω.m | 5000 Ω.m | | | | no influence | no influence | no influence | 10 | | | | no influence | no influence | 10 | 330 | | | | no influence | 10 | 65 | 820 | | | | no influence | 330 | 820 | see Note | | | | 10 | 820 | see Note | see Note | | | | 330 | see Note | see Note | see Note | | | | | no influence no influence
no influence no influence | $\begin{array}{c c} & & & & & \\ \hline 50 \ \Omega.m & & 500 \ \Omega.m \\ \hline \text{no influence} & & \text{no influence} \\ \hline \text{no influence} & & \text{no influence} \\ \hline \text{no influence} & & 10 \\ \hline \text{no influence} & & 330 \\ \hline 10 & & 820 \\ \hline \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | Note: with normal CP voltages, this current density cannot be achieved in this soil When the power line does not approach the pipeline diagonally, the full span distance s [m] is replaced by the lateral separation increase or decrease of subsequent towers; the zone distance is then decreased. The protection current density is determined not as much by the resistivity of the coating material, as by the imperfections and defects in the coating and joints (see 3.6.5). Bitumous coatings are prone to such imperfections and also to water absorption, which can increase current demand with the age of the pipeline. The protection current density for existing bitumen and tape wrap, 40-year old Transnet pipelines can reach up to 5 000 μ A/m2 in low soil resistivity regions. With modern pipeline coatings of high mechanical strength (e.g. polyurethane or polyethylene) usually only a few widely spaced defects occur. A current density in the range 10 - 50 μ A/m2 is regarded as normal, although 500 μ A/m2 is usually allowed for in the CP system design. ### 3.5 Soil Resistivity Measurements ### 3.5.1 General background The value of the soil resistivity has a significant influence on the level of conductive and inductive coupling. Calculations for voltages resulting from inductive coupling at 50 Hz can be in error by up to 100% if the soil resistivity value is incorrect. Conductive coupling is even more sensitive to the soil resistivity and the possible error is much larger. Soil resistivity can vary from about 10 ohm.m to 10 000 ohm.m depending on the type and age of the formation. With electrical conduction in soils being largely electrolytic, it is also considerably affected by the amount of soluble salts and other minerals present. It increases abruptly when the moisture content drops below 15 % the soil's weight, or when the soil temperature drops below freezing point. With Southern Africa's temperate climate, ground frost to any significant depth is not common, and the worst inductive or conductive coupling usually occurs in the dry season, i.e. when soil resistivity is at its highest. This is therefore the preferred time for measurements. When measurements are done outside this season, allowance should be made for seasonal variation of the soil resistivity. Soil is very rarely homogenous in a given area, it is more likely to exhibit variation with depth owing to layers of different type and structure, referred to as stratification. Stratification can increase the size of the ZOI resulting from conducted coupling, particularly when thin layer(s) of low resistivity overlay high resistivity bedrock. Lateral changes also occur, but in comparison to the vertical ones, these changes usually are more gradual. ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 31 of 96 Numerous tables can be found in the literature that provide soil resistivity ranges based on the type of soil formation. The use of such tables is generally not recommended for coupling studies, partly due to the possibility of stratification which is not visible from the surface, and partly due to the possible incorrect assessment of the soil type due to lack of experience. #### 3.5.2 Measurement methods For inductive and conductive coupling calculations, the soil resistivity measurement method used has to penetrate into the deep soil layers to establish if there are any important variations of resistivity with depth. The Wenner four - probe method as described in SANS 10199 (2004), par 3.2.2 or in IEEE 80 (2000), par 13.3 is the simplest and most commonly used method. The probe spacing should be according to tables 7 - 9, depending on the situation under study. With the Wenner method, soil resistivity soundings at a given probe spacing provide a measure of the apparent resistivity, ρ_a , taking into account soil layers to a depth of about 80 % of the probe spacing. Unless the soil is homogenous, this apparent resistivity will not be constant with increasing depth. From the apparent resistivity soundings it is then possible to deduce how many soil layers are present, and what the thickness and resistivity of each of these layers is. A typical example is shown in Fig 7. This relatively complex calculation generally requires the use of computer software (see 3.6.2.c). Graphical curve-matching methods as outlined in SANS 10199 and IEEE 80 may also be used, but are limited to simple soil compositions comprising no more than 2 layers. Table 7: Wenner soil resistivity soundings for inductive coupling studies | Probe spacing
a
[m] | Specific depth D = 0.8·a [m] | Tester reading
R
[ohm] | Geometric factor
K= 2π·a
[m] | Apparent resistivity ρ _a = K·R [ohm.m] | |---------------------------|------------------------------|------------------------------|------------------------------------|---| | 0.5 | 0.4 | | 3.14 | | | 1 | 0.8 | | 6.28 | | | 3 | 2.4 | | 18.85 | | | 10 | 8 | | 62.83 | | | 20 | 16 | | 125.7 | | | 30 | 24 | | 188.5 | | | 50 | 40 | | 314.2 | | | 70 | 56 | | 439.8 | | | 100 | 80 | | 628.3 | | | 120 | 96 | | 754.0 | | GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **32 of 96** Table 8: Wenner soil resistivity soundings for conductive coupling studies | Probe spacing a | Specific depth D = 0.8·a | Tester reading
R | Geometric factor
K= 2π·a | Apparent resistivity | |-----------------|--------------------------|---------------------|-----------------------------|--------------------------------------| | [m] | [m] | [ohm] | [m] | $\rho_a = K \cdot R \text{ [ohm.m]}$ | | 0.5 | 0.4 | | 3.14 | | | 1 | 0.8 | | 6.28 | | | 2 | 1.6 | | 12.57 | | | 4 | 3.2 | | 25.13 | | | 10 | 8 | | 62.83 | | | 20 | 16 | | 125.7 | | | 30 | 24 | | 188.5 | | Table 9: Wenner soil resistivity sounding for soil corrosivity studies | Probe spacing a | Specific depth D = 0.8·a | Tester reading
R | Geometric factor
K= 2π·a | Apparent resistivity | |-----------------|--------------------------|---------------------|-----------------------------|--------------------------------------| | [m] | [m] | [ohm] | [m] | $\rho_a = K \cdot R \text{ [ohm.m]}$ | | 2 | 1.6 | | 12.57 | | Figure 7: Example of apparent resistivity graph and calculated soil layers ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **33 of 96** A further development of the Wenner method is CVES (Continuous Vertical Electrical Sounding), which uses a much larger linear array of probes and enables the calculation of two-dimensional soil resistivity map, used for example to identify underground water, mineral pockets etc. This level of detail cannot be used in current power line / pipeline coupling software, however the raw data from the array can be averaged for each specific sounding depth and these averages analysed similar to Wenner soundings, resulting in improved accuracy. When used for inductive or conductive coupling studies, a typical CVES array would consist of 36 probes at 10 m intervals, providing penetration ranging from about 8 m to 100 m. To determine the surface resistivity, a measurement with the probes at 0.5 m intervals is also required, or alternately three conventional Wenner measurements at 0.5 m, 1 m and at 3 m probe spacings. Another alternative, non – invasive method for measuring subsurface resistivity employs inductive electromagnetic (EM) probes. Without the requirement of contact with the soil, these devices can be mounted on a vehicle trailer facilitating fast readings with high spatial resolution. Penetration depth typically varies from 1.5 m to 4.5 m, depending on coil spacing and polarization. EM probes are generally not suitable for deep soil resistivity measurements. #### 3.5.3 Selection of measurement sites The selection of sounding sites depends on the study under consideration. - a) For inductive coupling studies, the distance between DSR sounding sites along a parallelism should not exceed 5 km. For short parallelisms (< 10 km) this should be reduced to 2 km, to ensure a better average. These soundings should be done with the probe array perpendicular to the power line axis and centred near this axis, well away from the power line towers and guy wires (preferably at midspan). - b) For conductive coupling studies where no parallelism is present, only a single DSR sounding site is required. The probe array should start near the centre of the side of the substation grid or tower footing facing the pipeline, at a point separated some 10 m from the substation fence or footing and move perpendicularly outwards. - c) For soil corrosivity studies, surface resistivity measurements are recommended at intervals not exceeding 100 m, along the intended pipeline route. In wet, water logged or clay areas, the interval should be reduced to 50 m. Whilst these measurements are not essential for safety calculations, they are essential for an assessment of the corrosion risk and the design of the cathodic protection and monitoring systems. They can also be very useful in the design of a.c. mitigation measures, possibly leading to significant savings in the total length of gradient wire required. ## 3.5.4 Measurement precautions - a) Avoid sounding sites with the probe array parallel or quasi-parallel to metallic structures such as fences, existing pipelines, underground cables, railways, earthing grids or other
man-made structures if possible. If the site has to cross a pipeline or fence, the sounding should be done with the probe array perpendicular to the pipeline or fence. - b) Where possible, the direction of the array should be parallel to the geological strike of the site. The direction of the strike will usually be shown by lines of outcropping rock (ref. SANS 10199). - c) Wenner soundings should be analysed on site to enable identification of measurement errors, due for example to leakage, anomalous effects at the probes, a.c. induction, damaged leads etc. If the apparent resistivity is above 10 000 ohm.m or below 10 ohm.m, or differs greatly from a given trend in geologically similar conditions, the sounding should be regarded as suspect. - d) To ensure adequate measurement resolution with pin spacings of 30 m and larger, the instrument used for Wenner soundings should have a rating of at least 600 V / 2.5 A. - e) Inductive EM probes may be subject to interference near power lines due to corona noise or power line carriers in the frequency band of the instrument's receiver. GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **34 of 96** #### 3.6 Calculation of pipeline voltages #### 3.6.1 General A metallic pipeline subject to inductive influence can be modelled by multiple discrete sections, each consisting of a series impedance representing the resistance and inductive reactance of the metal casing, a shunt impedance representing the leakage resistance and capacitive reactance, and a voltage source representing the emf developed in the section by the power line currents, which may be calculated with the formulas developed by Carson and Pollaczek. In this form the pipeline closely resembles a leaky transmission line, and the theory for calculating the currents and voltages on transmission lines can be effectively applied. In this sense, the transmission line concepts of propagation constant, electric length and characteristic impedance also become valid for a pipeline. This model further enables the study of mitigation measures. For instance, an earthed electrode connected to the pipeline at a given point will reduce the corresponding section's shunt resistance to earth, whereas an insulating flange in the pipeline will increase the section's series resistance. By altering these resistances accordingly in the model, the effect of the measure(s) on the pipeline currents and voltages can be readily observed. The effect of capacitive coupling can be predicted using the Maxwell potential coefficient method. This is necessary only for above-ground pipelines or pipeline sections inside the servitude without regular earthing points. The effect of conductive coupling can be modelled using the concept of an equivalent hemispheric electrode for the tower footing or earth grid under study, although this method provides only limited accuracy near the electrode, or when the soil is stratified. More detailed, finite element computer models take account of the exact shape of the electrode and the soil layers, and can accurately predict the potential transfer to a pipeline, and its dissipation with distance from the region of injection. The theory of capacitive, inductive and conductive coupling is comprehensively covered in CIGRE Guide 95, "Guide on the Influence of High Voltage AC Power Systems on Metallic Pipelines". In general, for realistic exposures, analysis of the respective coupling components requires the use of suitable computer software. #### 3.6.2 Software packages A number of software packages for the calculation of the voltages on pipelines subject to power line coupling are commercially available. Software selected for this purpose should meet the following minimum requirements: - a) Inductive coupling calculations: - calculation of pipeline voltage and currents during steady state nominal and emergency load conditions with a single or with multiple adjacent power line(s), - calculation of pipeline voltage and currents during fault conditions at any point on the power line. - account for tower configuration, conductor sag, earth wires and phase transpositions, - capable of modelling and optimising the performance of earthing points, insulating flanges, gradient control wires, drainage units, sacrificial anodes and resistive bonds on the pipeline. - b) Capacitive coupling calculations: - calculation of the voltage of pipelines above ground subject to capacitive coupling from an overhead power line. ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **35 of 96** c) Conductive coupling calculations: - · calculation of multi-layer soil model from resistivity measurements, - earth potential rise (EPR) around a faulted tower or substation grid, - step potential, touch potential and coating stress on a pipeline traversing the EPR zone. - d) d.c. leakage calculations: - calculation of the d.c. potential distribution around ICCP-equipped pipelines and ground beds. - e) Fully benchmarked against known calculation or measurement results. For proper utilisation of these software packages, training of personnel through courses approved by the software developer are essential. Personnel using the software should also have fundamental training in electrical power networks, fault current calculations and electromagnetic coupling phenomena. #### 3.6.3 Inducing currents on a.c. power lines #### 3.6.3.1 Currents during normal operation #### a) Phase conductor ratings For inductive coupling calculations under normal operating conditions, the maximum rated current of the power line should be applied as inducing current. This rating is a function of the type and number of subconductors in the bundle. Table 10 indicates the rating for standard Eskom overhead conductor types, from DST 32-319 [13]. Rate A is the maximum operating current for normal load conditions, and is used for calculating the pipeline voltage when checking against the limit for a.c. corrosion (3.3.7). Rate B is the maximum operating current for emergency load conditions, and is used for calculating the pipeline voltage when checking against the safety limit (3.3.4). For XLPE and PILC cables, the conductor ratings depend on the copper cross section as well as the configuration (trefoil, single core or three core) and applicable de-rating factors, depending on the method of installation. These ratings should be obtained from the relevant department in Eskom on a case-by-case basis. #### b) Applying phase unbalance The magnitude of the individual phase currents on 3-phase power lines normally lines differ slightly due to different loading per phase. This introduces a zero-sequence current that has to return through the earthing system of the power line. Zero-sequence or earth return currents can cause inductive coupling over much greater distances than the balanced component. Local quality of supply standards recommend a maximum of 3% phase current unbalance in supply networks (ref. NRS048-2). For pipeline coupling calculations, an unbalance of 3% may hence be assumed. This can be applied directly to the magnitude of one of the phase currents. For example, from Table 5, the emergency load current per Dinosaur sub-conductor is 1 380 A r.m.s, i.e. 4 140 A r.m.s. for a 3- conductor bundle. The resulting emergency phase currents on a RWB – sequence circuit with Triple Dinosaur phase conductors will be: Red phase: IR = $4 \cdot 140 + 3\% = 4 \cdot 264 \text{ A r.m.s}$, angle 0° White phase: IW = 4 140 A r.m.s, angle -120° Blue phase: IB = 4 140 A r.m.s, angle 120° This method is sufficiently accurate even though the precise definition of phase unbalance is slightly more complex (see 3.1 in NRS048-2). GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **36 of 96** #### c) Effect of transpositions Transpositions place a different phase closest to the pipeline, normally with the result that, during steady-state induction, the induced pipeline emf is around 120° out of phase on either side of the transposition. This produces a pipeline voltage maximum at the transposition. Because of this important effect on the pipeline voltage profile, it is essential that transpositions are accounted for and that the correct sequence change is applied (a RWB – BRW transposition will have a different effect than a RWB – WRB transposition, for example). Table 10: Standard Eskom overhead conductor ratings (50°C), from DST 32-319 [13] | Conductor type | Overall diameter [mm] | d.c. resistance at 20°C [ohms] | Rate A [A r.m.s.] (see Note) | Rate B [A r.m.s.] (see Note) | |----------------|-----------------------|--------------------------------|------------------------------|------------------------------| | Tiger | 16.52 | 0.2202 | 322 | 466 | | Wolf | 18.13 | 0.1828 | 363 | 528 | | Lynx | | | 401 | 584 | | Chickadee | 18.87 | 0.1427 | 608 | 823 | | Panther | 21.00 | 0.1363 | 441 | 642 | | Pelican | 20.70 | 0.1189 | 475 | 698 | | Bear | 23.45 | 0.1093 | 521 | 767 | | Kingbird | 23.90 | 0.0891 | 586 | 831 | | Goat | 25.97 | 0.0891 | 618 | 866 | | Tern | 27.0 | 0.0718 | 665 | 963 | | Zebra | 28.62 | 0.0674 | 710 | 1022 | | Bunting | | | 881 | 1324 | | Dinosaur | 35.94 | 0.0437 | 938 | 1380 | | Beresford | 35.56 | 0.0421 | 965 | 1420 | | Antelope | 26.73 | 0.0773 | 628 | 921 | | Rail | 29.59 | 0.0598 | 765* | 1063* | | Squirrel | 6.33 | 1.3677 | 104 | 143 | | Fox | 8.37 | 0.7822 | 148 | 203 | | Mink | 10.98 | 0.4546 | 206 | 285 | | Hare | 14.16 | 0.2733 | 280 | 392 | | Magpie | 6.35 | 2.707 | 33 | 40 | | Acacia | 6.24 | 1.39 | 108 | 153 | | "35" | 8.31 | 0.785 | 158 | 216 | | Pine | 10.83 | 0.462 | 219 | 302 | | Oak | 13.95 | 0.279 | 297 | 417 | | Ash | 17.4 | 0.184 | 381 | 548 | | Yew | 28.42 | 0.0696 | 761 | 1073 | | Sycamore | 22.61 | 0.11 | 549 | 775 | |
Elm | | | 424 | 625 | **NOTE:** Multiply the rated current by the number of sub-conductors in the bundle ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **37 of 96** ### d) Phase sequence of double circuit power lines and multiple power lines On double circuit power lines, there are six possible phase configurations of the second circuit with respect to the first circuit. Assuming the latter to be RWB, the combinations are RWB-RWB, RWB-BRW, RWB-WBR, RWB-BWR and RWB-RBW. The emf induced on the pipeline will be increased or decreased depending on the relative position of the corresponding phases. Theoretically the highest emf will occur when the phase configurations in both circuits are the same (RWB-RWB), whist for the one or more of the other combinations, a cancellation or reducing effect can occur. This must however be investigated for each specific case, as it is dependant on the tower geometry and the relative position of the pipeline. Changing the phase configuration of double-circuit lines to minimise induction is normally not a viable mitigation option except possibly on new lines, in which case it must be ensured that no changes (e.g. transpositions) will occur on the line over the operational life of the line. A more conservative approach is to allow for changes in phase configuration, by selecting the worst-case phase combination and designing the pipeline mitigation accordingly. Assuming identical conductor characteristics on the two circuits, the worst-case double circuit induction level may be obtained by doubling the emf induced in the pipeline by the nearest circuit. For pipelines in servitudes with multiple power lines, the worst-case phase combination must similarly be accounted for. With three or more power lines however, the number of possible combinations to simulate increases greatly. A compounding factor for power lines operating from different busbars is the phase angle of the zero sequence currents, which is a function of the phase unbalance and can be different on each individual line. The worst case would be when all the zero sequence currents are in phase, whilst out-of-phase zero sequence currents would result in reduced induction levels. For multiple power lines it is therefore simpler to establish the worst case combination by starting with the line nearest to the pipeline (or the line with the greatest overall influence) and assigning a RWB phase sequence. The next nearest line then added and the phase sequence of this line adjusted until maximum pipeline voltage is obtained, and then remains fixed. This process is repeated for all lines, each time without any further adjustment of the previous lines. For all lines, the unbalance is applied to the same phase (e.g. Red). This procedure effectively ensures the worst-case combination of phases and in-phase addition of all emfs produced by the zero-sequence currents. ### 3.6.3.2 Currents during faults #### a) Sliding fault current profile On a typical ring-fed power line, the inducing current magnitude is at a maximum for a fault near the substations feeding the line, and at a minimum near the middle of the line, due to the increased line impedance with distance to the fault. This impedance gives rise to the sliding fault current profile of the power line (see Fig 8). At the substations, the fault level is determined by the equivalent source impedance, which represents the sum of all impedances of the network between that point and the power generating station(s). In a 3-phase system, this impedance may be represented by its positive, negative and zero sequence components. The sequence components can be calculated for any substation in the network with power systems analysis software such as PSS/E or PowerFactory. GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **38 of 96** Figure 8: Example of sliding fault current vs. tower number, 220 kV line To compute the sliding fault current for a given line, the substation's equivalent source impedances are required without this line in place. The line's circuit breakers must therefore be temporarily opened in the analysis software when the equivalent source impedances are computed. With the substation's equivalent source impedances and the line data (tower configuration and conductor data, checklist A.3) available, the sliding fault current profile can be computed using suitable software. The sub-conductor's radius and d.c. resistance is provided in Table 10. Only a 1- phase to earth fault needs to be considered, since the residual currents during 2- and 3- phase to earth faults will be of a smaller magnitude. #### b) Currents producing tower footing EPR In power lines equipped with earth wires, the returning fault current is distributed between the faulted tower and the footings of adjacent towers by the earth wires. Some of the current never enters the earth, being carried back to the substation along the earth wires. When calculating the earth potential rise around a tower therefore, this division of the current has to be carefully established. The nominal tower footing resistance in terms of Transmission standard TST41-321 [7] as indicated in Table 11 and the diameter and d.c. resistance of commonly used earth wires, is given in Table 12. GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **39 of 96** Table 11: Nominal tower footing resistance (maximum) | Voltage rating [kV] | Nominal footing resistance [ohm] | |---------------------|----------------------------------| | 132 | 20 | | 220 | 30 | | 275 | 30 | | 400 | 40 | | 765 | 50 | Table 12: d.c. resistance of standard Eskom earth wires | Conductor type | Overall diameter [mm] | d.c. resistance at 20°C
[ohms] | |-----------------|-----------------------|-----------------------------------| | 7/3.51 mm steel | 10.53 | 2.86 | | 19/2.7 mm steel | 13.48 | 1.80 | | OPGW(48 core) | 17.50 | 0.220 | | Horse ACSR | 13.95 | 0.394 | | Tiger ACSR | 16.52 | 0.220 | The nominal footing resistances increase with voltage rating due to the back-flashover rate required for power lines, and may be regarded as an upper limit. Actual footing resistance can be much lower, particularly for large towers with extensive foundations. An example for of the calculated current distribution of a 15 kA fault on a horizontal 132 kV line with 2 \times 7/3.51 mm steel earth wires is shown in Fig 9. For this example, which has typical values for the tower footing resistances and substation earth mat resistance, the current I_F entering the earth through the faulted tower's footing is less than 13% of the total fault current. This is the fraction of the fault current that has to be considered in the calculation of EPR around the faulted tower. Figure 9: Example of current distribution for a 15 kA fault on the 10th tower of a 132 kV line GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 40 of 96 #### c) Currents producing substation EPR If there is 1- phase to earth fault in or near a substation, the current I_E flowing through the earthing system of the substation causes the EPR. This current is always smaller than the substation's rated fault level, I_d , because a significant portion returns through the earth wires (see Fig 10). Figure 10: Calculation of electrode current, I_E, with a fault inside a substation (from ITU-T Directives, Vol II [30]) There are also two components of I_E , namely the transformer's contribution and the system's contribution. One of them is decisive from the point of view of EPR. If the earth fault occurs within the substation, the transformer's contribution circulates in the station and never enters the earth, hence only the zero-sequence currents coming from the system outside the station in question can cause EPR. In this case, the current through the earth (i.e. the current from the network flowing through the earthing resistance R_A of the station) is given by Eqn (6): $$I_{E} = \sum_{i=1}^{N} \mathbf{k}_{i} \cdot \mathbf{I}_{i} \tag{6}$$ where N is number of the lines entering the station, k_i the screening factor of the respective lines (see below), and Ii the fault current of the line i If the earth fault occurs outside the substation, the EPR is caused by the zero-sequence current which the station itself feeds into the fault as well as the zero-sequence currents from the system, taking into account the different screening factors (see Fig 11). ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF PIPELINES AND POWER LINES Unique Identifier: 240-66418968 Revision: 1 Page: 41 of 96 Figure 11: Calculation of electrode current, I_E , with a fault outside a substation (from ITU-T Directives, Vol II [30]) If N-1 is number of the lines entering the station excluding the faulted line, the current flowing through the earthing impedance of the station is given by Eqn (7): $$I_{E} = k_{D} \cdot I_{A} + \sum_{i=1}^{N-1} (k_{D} - k_{i}) \cdot I_{i}$$ [A] where k_D is the screening factor of the faulted line, k_i is the screening factor of the remaining lines feeding the station, I_A is the fault current supplied by the substation transformer [A], Ii is the fault current of the line i [A]. Depending on the amount of current provided by remote stations relative to the current provided by the local transformer, the decisive location of the fault may be either inside the substation or outside. Both situations should be evaluated to determine the worst case EPR at the substation of interest. In step-down substations, this evaluation should be done on the side of the station transformer which results in the highest fault current. Depending on the transformer rating, this can occur on the lower voltage level. GUIDELINE ON THE ELECTRICAL
CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **42 of 96** #### 3.6.3.3 Determination of the most hazardous location(s) of a power system earth fault #### a) Conductive coupling only For conductive coupling, an earth fault at the mast or tower closest to the pipeline will normally produce the highest coating stress, however all masts or towers with a ZOI overlapping the pipeline route need to be considered individually, taking due account of the power line's sliding fault current and the local soil conditions. #### b) Inductive coupling only For inductive coupling, the worst location for an earth fault is usually at one end of the exposure. In Fig 12, a fault at position Y will expose the entire pipeline X-Y to a fault level I_Y , resulting in the highest induced voltage from substation A. The current from substation B will give the highest induced voltage at the fault position X, exposing the entire pipeline to a fault level I_X . Since I_Y is larger than I_X , a fault at position Y will give the worst case. Should the fault occur between X and Y, the fault level from each side would be higher than I_X and I_Y , however the pipeline is only partially exposed. With both breakers closed, the currents flow in opposite directions and the emfs developed in the pipeline will be 180 $^{\circ}$ out of phase, resulting in an overall reduction of the induced voltage. When the pipeline extends beyond substations A or B, point X or Y will move directly opposite substation A or B and the worst case will result from a fault at substation A or B, respectively. Breakers at substation A and B will usually not open and auto-reclose at precisely the same instant, and at a given instant following the insulation breakdown, the fault may be fed from substation A only, from substation B only, or from both substations. From the viewpoint of inductive coupling, the highest coupling will occur with the fault fed from one (highest) end only. From the viewpoint conductive coupling, the highest EPR around a tower structure will occur with a fault fed from both ends. For more complex situations, it may be necessary to calculate the pipeline voltage for a number of possible fault locations, to confirm the worst position. Figure 12: Finding the worst fault position location on arbitrary exposures (adapted from ITU-T Rec K68 [31]) ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 43 of 96 #### c) Conductive and inductive coupling For conductive coupling from a power line encroachment that also contains a parallelism, the coating stress is the vector sum of the inductive and conductive coupling effects. The voltage profile produced by inductive coupling must then be established first (see 3.6.6) and considered in combination with the faulted tower's EPR, to determine where the highest pipeline coating stress will occur. #### 3.6.4 Inducing currents on HVDC power lines HVDC fault or load currents do not produce any inductive coupling, however, during the transient when the current changes from normal to fault level, or during operational switching transients, inductive coupling will occur. This coupling is proportional to the rate of change of the current and can produce considerable pipeline voltages. The rate of change (dl/dt) is dependant on the impedances inherent to the power line. For HVDC lines of normal construction, the induced transient voltages can be closely approximated by applying a 50 Hz steady state current with a magnitude corresponding to the transient. The d.c. current is replaced by an a.c. waveform with a peak value equal to the d.c. voltage (or Va.c. r.m.s. = 0.707 Vd.c.). The d.c. circuit can be either monopolar (earth return) or bipolar, and the a.c. current should be applied accordingly. Tests conducted on a pipeline parallel to the Apollo-Pafuri HVDC lines showed that switching transients actually produce higher voltages than earth faults. It was also observed that the duration of switching transient's peak can exceed 0.2 sec, with some ringing occurring even after 1 sec [32]. The permissible touch voltage should therefore be based on an event duration of 1 sec, and the worst condition considered is a switching transient from 0 A to the line's maximum current capacity. HVDC converters also produce steady state harmonic currents, that can couple inductively with the pipeline. A 6 – pulse converter such as Apollo for example, produces a 6th, 12th and 18th current harmonics (300 Hz, 600 Hz and 900 Hz) on the d.c. side. Their magnitude is however limited by means of harmonic filters, typically to less than 0.2% of the load current, and the resulting pipeline voltages do not pose any significant safety hazards. #### 3.6.5 Pipeline coating resistivity The variation in coating resistivity, thickness and specific resistance of commonly used pipeline coatings is indicated in Table 13: Table 13: Typical variation of coating resistivity and thickness | Coating material | Laboratory
resistivity
[ohm.m] | Field
resistivity,
minimum
[ohm.m] | Field
resistivity,
maximum
[ohm.m] | Coating
thickness
[mm] | Specific
resistance
[ohm.m²] | |---|--------------------------------------|---|---|------------------------------|------------------------------------| | Bitumen | > 10 ¹² | 0.2 x 10 ⁶ | 2 x 10 ⁶ | 4 – 10 | $0.8 \times 10^3 - 20 \times 10^3$ | | Polyethylene
(e.g. 3LPE, MDPE) | 10 ¹⁶ | 20 x 10 ⁶ | 200 x 10 ⁶ | 0.8 – 4.0 | $16 \times 10^3 - 0.8 \times 10^6$ | | Fusion-bonded epoxy (FBE) | 10 ¹³ | 2 x 10 ⁶ | 20 x 10 ⁶ | 0.3 – 0.5 | $0.6 \times 10^3 - 10 \times 10^3$ | | Polyurethane
(rigid PU, 2-component
PU) | 10 ¹⁴ | 20 x 10 ⁶ | 200 x 10 ⁶ | 0.4 – 3.0 | $8 \times 10^3 - 0.6 \times 10^6$ | ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 44 of 96 Resistivities of coatings in field conditions are considerably lower than the same material under laboratory conditions, due to defects or holidays in the coatings, poorly coated fittings, defects in the coating of the field joints and moisture absorption. For bitumous coatings in particular, the resistivity has a tendency to decrease over time. Pipelines with low resistivity coatings will exhibit lower induced voltages than pipelines with high resistivity coatings (see 3.6.9). For calculations related to safety and a.c. induced corrosion, the highest expected resistivity value should be applied. For d.c. leakage calculations however the lowest expected value should be used, since the cathodic protection current increases with decreasing resistivity. #### 3.6.6 Calculation of inductive coupling during a power system earth fault With the worst fault location(s) established according to 4.6.3.3 and the corresponding fault current according to 4.6.3.2, the fault current can be applied to the phase conductor positioned closest to the pipeline. The condition resulting in the highest induction level is when the circuit breaker at the opposite end of the line has already opened, hence the current beyond the fault point as well as the current in the non-faulted conductors are set to zero. Normal load currents in any adjacent power lines may be ignored, in view of the much larger zero-sequence current produced by the faulted line. The next step is to calculate the current induced in the earth wires during the fault. Following this, and subsequent to data entry of the respective pipeline and power line routes, pipeline coating and soil characteristics, the emf induced in the pipeline sections may be calculated. To ensure that the effect of the power line catenary is accounted for, section lengths should not exceed 50 m. The pipeline voltage profile and shunt and series current is calculated next from these discrete section emfs and any specified earthing points or any discontinuities on the pipeline (e.g. insulating flanges). At this stage it is also possible to experiment with different earthing points as a means of mitigation, if the coating stress limit or the safety limit is exceeded (see 3.6.9, 3.6.11). #### 3.6.7 Calculation of conductive coupling from towers and substation earthing grids #### 3.6.7.1 Calculation of the EPR or surface potential In homogenous soil, the EPR of the soil around a faulted tower or substation decreases as the inverse of the distance from the centre of the equivalent hemispherical electrode. This simple relationship does however not apply for stratified soil, which can cause order of magnitude EPR increases or decreases at a distance from the point of current injection. In particular, when the soil is comprised of a low resistivity upper layer over high resistivity bedrock, the current is confined to the upper layer and the EPR may spread over a much greater distance. To model the faulted tower footing or earthing grid in multilayer soil, a wire or grid model is required. For substation grids, a suitable model is a rectangular meshed grid of roughly the same size as the actual substation, consisting of 10 mm diameter copper conductors, buried at a depth of 1 m. In low or medium resistivity soil, the grid model needs to have no more than about 10 conductors in total, i.e. a 200 m x 200 m grid can be modelled with sufficient accuracy by a mesh size of 50 m x 50 m, even though the actual conductor density would be higher. Additional conductors will not reduce the grid's effective resistance to earth or affect the EPR profile outside the station, but will increase computation time. In high resistivity soil (> 1000 ohm.m) the conductor density should be increased until there is no further decrease in the grid's effective resistance to earth. Modelling tower footings can be more complex
due to the variance of foundation designs, which are adapted to suit the mechanical properties of the local soil. Acceptable accuracy will however result from approximate models. For lattice-type self-supporting EHV towers with concrete-encased footings, a suitable model would consist of four interconnected rod electrodes, each of 1.5 m diameter and 5 m depth, spaced according to the tower's base dimensions. ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **45 of 96** For guyed towers, the anchors and mast support foundations may be similarly modelled, and the model may be scaled down for smaller HV towers. Metallic or reinforced concrete pole-type tower footings may be modelled as a single rod electrode, with dimensions in accordance with the actual footing and concrete foundation diameter. When there are counterpoises installed, these will have a significant effect and they should be modelled according to their actual dimensions. Some software packages will permit the modelling of the concrete around the footings, however, being relatively conductive, the concrete may as a first approximation be regarded as being part of the metallic structure. More accurate modelling of the foundations (pads, piles etc.) will also have only a limited influence on the calculated EPR around the tower. As discussed in 3.6.3.2, only a fraction of the fault current will enter the earth at the tower footing. With this fraction determined, the grid or tower model entered and soil layers specified, it will be possible to compute the potential rise of the footing and the EPR as a function of distance from the tower or grid to the pipeline. A useful check is that the potential rise should not exceed 5 kV for substation grids or 30 kV for tower footings. Substation grids will only rarely exceed 5 kV, and only in the case of smaller HV substations in poor soils; for Eskom's EHV substation grids 5 kV is the design limit. In the case of towers equipped with earth wires, a potential of the faulted tower greater than 30 kV is highly unlikely. #### 3.6.7.2 Calculation of pipeline touch voltage For a pipeline traversing an EPR zone, some of the potential will be transferred to the pipeline through its coating. Some of this transferred potential can appear on the pipeline well beyond the shared servitude. The pipeline touch voltage (which, for practical purposes, is equal to the coating stress) is then the difference between the local EPR and the voltage transferred to the pipeline (see Fig 13). Figure 13: Touch voltage resulting from conductive coupling from a faulted tower To calculate the voltage transferred to the pipeline requires the model to extend to a point where the EPR has effectively diminished, which can be several kilometre. At the ends of this length, an earth point is required to represent the remainder of the pipeline's coating admittance to earth. A further uncoated 500 m section of pipeline may be specified to provide such an earth. ## **GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF** **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 1 Revision: Page: 46 of 96 If the exposure involves a parallel or quasi-parallel section, the total pipeline touch voltage must take both inductive and conductive coupling into account. This may be achieved by summation of magnitudes of the pipeline voltage profile due to induction and the pipeline touch voltage due to conductive coupling. This worst-case summation closely represents the actual situation, since the induced pipeline voltage is usually close to 180° out of phase with the EPR. The effects must therefore be added and will produce more severe touch voltages and coating stresses in combination. #### 3.6.8 Calculation of pipeline voltages during normal and emergency load conditions Compared to fault conditions, the emf produced by a power line carrying a balanced load current is much more sensitive to the precise juxtaposition of the phase conductors with respect to the pipeline - under a tower with a horizontal layout for example, the emf is near zero underneath the central conductor but reaches a maximum underneath the outer conductors. It is therefore important that the relative positions of the phases is accurately represented for the normal and emergency load calculations. These are dependant on the tower configuration, the conductor catenary and on the layout of any transpositions. If there are multiple circuits or multiple power lines in the servitude, the respective phasing of the conductors has to be considered, as discussed in 3.6.3.1 d). There is no conducted component present as in the case of fault conditions. The calculation of the pipeline voltage profile is otherwise very similar to 3.6.7, and earthing points can be applied to the pipeline to ensure that the safety limit is met during emergency load conditions and the a.c. corrosion limit is met during normal load conditions. At peaks in the voltage profile, the safety limit may be exceeded - provided further measures are taken to raise the potential of the local soil to ensure that the touch and step limits are not exceeded (e.g. by means of valve station gradient mats, or gradient wire). #### 3.6.9 Determination of the most likely locations of pipeline voltage peaks For a short, parallel exposure with uniform soil conditions and no earths, the voltage developed on the pipeline due to inductive coupling will have a linear profile with maxima at the pipeline ends and a zero crossing in the centre, as shown in Fig 14 (a). For a similarly uniform, but long exposure, the pipeline will become more lossy and the linear profile will be replaced by an exponential decay, Fig 14 (b). (a) Electrically short pipeline $(L_p < 1/\Gamma)$ Figure 14: Voltage developed on uniformly exposed pipelines with no earthing ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **47 of 96** The distinction between long and short exposures is made on the basis of the electrical length of the pipeline, $1/\Gamma$, where the parameter Γ is the pipeline's propagation constant (m⁻¹). For a given inducing field strength E (V/m), the pipeline voltage magnitude will not increase beyond the value $|E|/\Gamma$, irrespective of any further increase in exposure length. The electrical length $1/\Gamma$ is a function of the pipeline's depth, wall and coating properties, diameter, the soil resistivity and the frequency. Typical values for 50 Hz range from 1 km to 5 km for pipelines with bitumous coatings, and from 10 km to 30 km for pipelines with epoxy, polyethylene or polyurethane coatings. As a result, the voltages developed on long pipelines with modern, high resistivity coatings can be around ten times higher than on pipelines with bitumous coatings, and the width of the voltage peak is increased by the same order. For both short and long lines with uniform exposures, the most effective mitigation earthing will be at the pipeline ends, i.e. at the peaks of the voltage profile. For long, non-uniform exposures, voltage peaks are likely to develop in addition at any discontinuities in the exposure, for example at power line or pipeline route deviations, at crossings or power line transpositions (under steady-state conditions only) and at insulating flanges (see Fig 15). Figure 15: Location of voltage peaks on non-uniform exposure pipeline with no earthing These voltage peaks will exhibit the same exponential decay on either side of the discontinuity as indicated in Fig 14(b), and will again not exceed the value $|E|/\Gamma$ in magnitude (E in this case being the maximum inducing field strength applicable to the section in question). The most effective mitigation earthing is usually at the location of these voltage peaks. When earthing is applied at a given point on a pipeline however, the voltage can increase or "balloon" at another point, and for this reason additional earthing points may also be required in the uniform sections of the exposure, as will be evident from the calculated voltage profile. #### 3.6.10 Calculation of d.c. leakage from pipelines and anode ground beds The surface potential distribution adjacent to a pipeline may be calculated for homogenous soil from Eqn.(5) for a given protection current density. In case of stratified soil, a computer simulation is required. A substantial section of the pipeline should be modelled (e.g. 5 km) to ensure that the field distribution remains cylindrical up to the distance considered, and the surface profile should be computed at its centre. The pipeline should be energised to -1.5 V d.c. If using an a.c. model, the frequency should be adjusted to 1 Hz or less, to simulate d.c. conditions. The resulting lateral surface potential profile is then examined to establish if the potential difference between the towers of any span exceeds 200 mV. This could result in the 200 mV positive d.c. potential shift limit being exceeded at the tower footing. ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 48 of 96 The anode ground bed should be modelled according to its actual dimensions (typically a linear conductor) energised to the maximum capacity of the CP rectifier (typically 50 V). If the resulting lateral surface potential profile indicates that the potential difference between two towers of a span exceeds 200 mV, the 200 mV limit could be exceeded at the towers where the current returns to earth. If the ground bed is very close to a tower with an insulated earth wire, the profile has to be examined to ensure that the potential difference across the tower legs or guy anchors does not exceed 400 mV. Should any of these limits be exceeded, this would serve as an indication that post-installation measurements are required at the tower footings where the current
returns to earth, to determine the actual level of interference occurring under operational conditions. (see 3.3.8 (b)). ## 3.6.11 Calculation of pipeline voltages with mitigation measures applied The calculation of pipeline voltages due to inductive coupling with mitigation earthing applied is similar to the calculation without earths, as discussed in 3.6.6 and 3.6.8, but with all the earthing points and isolating flanges included in the circuit. The applied earths should include zinc ribbons, earth rods, pump station earthing mats and other earths connected to the pipeline through d.c. decouplers, but should exclude the valve station gradient mats which are connected to the pipeline through SPDs, unless the calculated voltage profile indicates that the SPD's breakdown voltage is exceeded at any specific valve station, as is likely to occur during fault conditions. In most software packages, this calculation will only provide the resultant pipeline voltage with respect to remote earth. The touch voltages will be further reduced by gradient mats at valve chambers, and both the touch voltage and the coating stress will be further reduced along pipeline sections with gradient wire(s). Properly designed and installed gradient mats around valve chambers will invariably bring the step and touch voltages at the chamber to within the required limits, and further simulation of this situation is generally not required. If no external mat is used and only the chamber's re-bar is earthed, it may be necessary to model this situation specifically. The effect of the gradient wire also needs to be investigated with a suitable simulation. For example, Fig 16 shows the result of CDEGS simulation of short (150 m) sections of Type II zinc ribbon, installed next to a 1100 mm diameter pipeline with a polymer-modified bitumen coating, in soil consisting of a 15 m thick layer of 500 ohm.m over 1500 ohm.m bedrock. The pipeline is energized to 100 V. Figure 16: Example of the reduction of touch voltages by zinc ribbon installed in pipeline trench ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **49 of 96** In this example, a single and double ribbon is seen to reduce the touch voltage by more than 60% and 80% respectively. Generally, this effectiveness decreases with increasing soil resistivity, but it is also sensitive to soil stratification. Each specific situation must therefore be confirmed with a similar calculation. In the case of conducted coupling, a zinc ribbon section opposite tower footings will also be effective in reducing the touch voltages where there are sharp EPR gradients present – however, the ribbon can have the undesirable effect that the potential transferred to the pipeline as discussed in 3.6.7.2 increases substantially, creating hazardous touch voltages remote from the fault location, as shown in Fig 17: Figure 17: Touch voltage resulting from conductive coupling from a faulted tower, with zinc ribbon installed near the faulted tower or grid Because of this effect, it is not always advisable to install zinc ribbon near close approaches with towers or substation grids - though this may be unavoidable if the coating stress limit is also exceeded. If only the safety limit is exceeded, gradient mats may be used for mitigation in these areas. When zinc ribbon is used, the resultant touch voltage away from the tower or grid must in any event always be evaluated by means of an appropriate simulation model. #### 3.6.12 Determination of current rating of d.c. decoupling devices, SPDs and cables Included in the coupling simulation results for both emergency load and fault conditions will be the individual currents flowing to earth at each earthing point, as well as the series current along the length of the pipeline. These current levels have to be compared against the d.c. decoupler device ratings, e.g. the maximum continuous a.c. rating and the fault rating specified in B.2 and B.4 of Annex B. This also applies to d.c. decouplers installed across insulating flanges, which will carry the full series current at the respective point on the pipeline. If the predicted current levels are higher than the rated values, the device ratings have to be increased, or the earthing resistance of the individual mitigation earthing point has to be reduced (e.g. by splitting the length of the zinc ribbon section in two). If increased device ratings are used, the copper cable cross-section specification B.5 of Annex B has to be increased accordingly. GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 50 of 96 ### 3.7 Mitigation measures #### 3.7.1 Mitigation measures applicable to pipelines #### 3.7.1.1 Routing of the pipeline If the permitted coupling levels are exceeded, increasing the separation between the power line and pipeline may in some cases be a viable option to reduce coupling to acceptable levels. Increasing separation is especially suitable for conductive coupling from power line towers, substations and transformers, where a reasonable increase in separation can overcome most problems. Substantial re-routing is usually required to reduce inductive coupling because of the slow decrease of inductive coupling with distance, and is often not a practical solution. #### 3.7.1.2 Gradient control wires / ribbons Gradient control wires provide a.c. mitigation by two mechanisms - firstly, by providing an earthing point which reduces the overall pipeline voltage, and secondly, by changing the potential of the soil around the pipeline, thereby reducing the coating stress and touch voltages. They are most effective in conditions of low resistivity soil overlaying high resistivity bedrock, and least effective in high resistivity soil overlaying low resistivity soil. Gradient control wires typically consist of a specified length of one or two uninsulated profiled zinc conductors (also referred to as zinc "ribbons") installed in the corner(s) of a pipeline trench, prior to bedding and backfill material. A suitable specification for zinc ribbon is provided in B.1, Annex B. If the pipeline is protected with an ICCP system, they have to be connected to the pipeline through appropriately rated d.c. decouplers. The d.c. decouplers are normally installed above ground, housed in suitably designed a.c. mitigation stations. For pipelines without ICCP systems, the zinc ribbon may be connected directly to the pipeline, at regular intervals (nominally 300 m). In this case they will behave as sacrificial anodes and provide cathodic protection to the pipeline, in addition to providing a.c. mitigation. The connections between the ribbon, the d.c. decoupler and the pipeline have to be made with copper wire as specified in B.5, Annex B. The earthing resistance is determined primarily by the resistivity of the layer in which the ribbon is installed, and is calculated from Eqn (9): $$R = \frac{\rho}{2\pi\ell} \cdot \ln\left(\frac{\ell^2}{sd}\right)$$ [ohm] where: ρ is the soil resistivity [ohm.m], ℓ is the length of the ribbon [m], s is the burial depth [m], d is the average thickness or the diameter [m]. Eqn (6) ignores the self-resistance of the wires; this limits its application to lengths to approximately 500 m for type II zinc ribbon (see Annex B). The resulting earthing resistance for some typical conditions is shown in Table 14. GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **51 of 96** Table 14: Earthing resistance provided by gradient control wire, buried 2 m deep | Electrode type
(Type II Zinc) | R _{electrode} for soil resistivity [ohm] | | | | | |----------------------------------|---|-----------|-----------|--|--| | | 100 ohm.m | 250 ohm.m | 500 ohm.m | | | | 100 m zinc ribbon | 2.1 | 5.4 | 10.8 | | | | 200 m zinc ribbon | 1.1 | 2.7 | 5.4 | | | | 300 m zinc ribbon | 0.8 | 1.9 | 3.8 | | | | 400 m zinc ribbon | 0.6 | 1.5 | 3.0 | | | To limit both the current rating requirement of the d.c. decouplers and the voltage gradient along the ribbon's length resulting from its self-impedance, ribbon sections should generally not exceed 400 m in length. For optimum current distribution the d.c. decouplers should be connected near the centre and successive sections should not be in direct contact. The earthing resistance of the zinc ribbon improves only very marginally by using two ribbons as opposed to one. Using two ribbons is only necessary when the coating stress is very high, in which case a second ribbon can provide some improvement (see Fig 19). #### 3.7.1.3 Vertical earth rods Like gradient control wires, vertical earth rods can be used to provide an earthing point and thereby reduce the pipeline voltage, but they are not as effective in changing the potential of the earth around the pipeline. They find application mainly when the resistivity of the upper soil levels is very high compared to the lower levels, when gradient control wires are least effective. They can also be used in combination with gradient control wires, i.e. by connecting one or more vertical rods to the horizontal ribbon, thereby providing access to the low resistivity layers. Vertical earth rods for this purpose require a borehole to be drilled into the conductive layers and can exceed 100 m in depth. To prevent wall collapse, a steel pipe sleeve is normally inserted, typically of 200 mm – 300 mm diameter. The earth rod may be implemented with Type II zinc ribbon, fitted centrally in the sleeve which is then filled with carbonaceous backfill. This arrangement improves durability and increases the effective contact surface. For homogenous soil, the earthing resistance of a vertical earth rod is given by Eqn (10): $$R = \frac{\rho}{2\pi\ell} \cdot \ln\left(\frac{4\ell}{d}\right)$$ [ohm] where: ρ
is the soil resistivity [ohm.m], ℓ is the length of the ribbon [m], d is the diameter of the steel sleeving [m]. For stratified soil, the earthing resistance can be calculated using suitable software. The actual resistance can also be measured during the drilling process, to determine if the low value required has been achieved and if further drilling is warranted. Connection to the pipeline is done in the same manner as gradient control wires, i.e. through a d.c. decoupler in the case of pipelines equipped with ICCP systems or with a direct connection otherwise, using stranded copper wire as specified in B.5, Annex B. ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **52 of 96** ### 3.7.1.4 Gradient control grids Gradient control grids can be used at exposed appurtenances of buried pipelines (i.e. valve chambers, pigging stations, CP stations etc. but excluding test posts, see 3.7.1.6) to equalise the soil potential around (or inside) the appurtenance to the pipe potential, thereby reducing the touch and step potentials. Gradient control grids typically consist of a wire mesh or spiral at a depth of about 0.3 m installed around the appurtenance to a distance of at least 1.2 m, so that a person in contact with the appurtenance or enclosure will always be standing over the mat. Spiral type mats are usually constructed of zinc ribbon as used for gradient control wires. To ensure that the step potential limits are not exceeded, the pitch between successive rings should not exceed 300 mm. Wire mesh type grids are usually constructed of welded, 6 mm diameter, 200 mm x 200 mm steel meshes as used in the building trade. To prevent corrosion, these grids have to be encased in a concrete layer. Both spiral and wire mesh type gradient control grids provide very effective touch and step potential mitigation at 50 Hz. Mesh type grids have however become the preferred type, because they allow more effective dissipation of current during surges (e.g. from switching and from lightning). In the case of valve chambers constructed with steel reinforcing in the floor and/or walls, the reinforcing can be used for gradient control inside the chamber, by forming a Faraday cage at pipeline potential. This reduces the internal touch and step potentials to zero for 50 Hz and to very low values for surges. The efficiency of a gradient control grid as an earthing point is usually quite low, although the cumulative effect of a number of mats can be of some benefit during fault conditions. In homogenous soil, the earthing resistance of a gradient control grid is given by Eqn (11): $$R = \frac{\rho}{4} \sqrt{\frac{\pi}{A}}$$ [ohm] where: ρ is the soil resistivity [ohm.m], A is the area of the grid [m²]. The connection to the pipeline is normally made through a voltage limiting device (see 3.7.1.5), and the grid remains out of circuit under normal operating conditions. An example specification of a wire mesh type gradient control grid is given in B.3, Annex B. #### 3.7.1.5 Solid state d.c. decouplers and voltage limiting devices Any direct earthing applied to the pipeline burdens the CP system, and d.c. decouplers are required which provide d.c. isolation whilst exhibiting a very low a.c. impedance. For all mitigation earthing such as vertical rods or gradient control wire, which have to be functional during steady state and fault conditions on the power line, d.c. decouplers are designed with multiple parallel paths to accommodate the normal current, fault current and lightning surges respectively. The d.c. blocking voltage of these devices has to be asymmetric (-3V /+1V) to ensure that with high a.c. interference levels, the pipeline remains approximately 1 V more negative than the earthing points. If the pipeline is also influenced by d.c. traction or other stray d.c. sources, the asymmetry has to be increased (-12V/+1V). A suitable specification is provided in B.2, Annex B. Similar d.c. decouplers are required to provide a low impedance a.c. path across insulating flanges, however if both sides are cathodically protected, the voltage should be symmetric (-2V/+2V). This permits 2 V blocking when the CP on either side is switched off. In case one side is earthed, for example at a pump station, an asymmetrical unit is used. ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF PIPELINES AND POWER LINES Unique Identifier: 240-66418968 Revision: 1 Page: **53 of 96** For gradient control mats at valve chambers, an a.c. path is not required during steady state conditions. In this case a voltage limiting device is used that is functional only during transients due to a.c faults or lightning. An SPD (e.g. a GDT or a MOV) with an a.c. clamping voltage around 75 V r.m.s. is suitable for this purpose. A specification for this type of device is provided in B.4, Annex B. #### 3.7.1.6 Test posts with a.c. coupons Test posts with carbon steel coupons are usually installed in a.c. induction zones at intervals of approximately 1 km, or at specific locations of high corrosivity, for the purpose of monitoring the performance of the CP and a.c. mitigation systems. The coupons simulate a coating defect of 1 cm², and the a.c. and d.c. coupon currents are directly proportional to the current densities at actual pipeline defects. Test post terminals are typically housed in pre-cast concrete bunkers or in above- ground galvanized steel cabinets installed on a pre-cast concrete base. Gradient control mats should not be used at test posts, as these can modify the electric field around the pipeline and thus affect the coupon readings. Test post terminals must however be installed with a "dead-front" arrangement according to NACE RP0177, to prevent accidental contact with the terminal of the cable connected to the pipeline. Test posts may be equipped with a stone or asphalt ground cover around the base for additional protection. #### 3.7.1.7 Bonding with existing structures When a new pipeline subject to a.c. coupling is installed next to an existing pipeline, and if there is any possibility of a person being in simultaneous contact, the two pipelines must be cross-bonded with bonding links at intervals not exceeding 1 000 m, to prevent any hazardous potential differences. These can be direct bonds, resistive bonds or d.c. decouplers, as dictated by the CP requirements. At crossings or close approaches with d.c. railways, pipelines should be bonded to the rails with a directional drainage bond in accordance with SANS 50162. Pipelines should under no circumstances be bonded to power line towers, tower counterpoises, substation earth grids, power cable screens or any other earthed component of MV, HV or EHV a.c. power networks, as any surges in the power network would then be transferred directly to the pipeline. Bonding to the earthing of any other infrastructure that is not well defined should generally be avoided. #### 3.7.1.8 Isolating flanges Isolating flanges can be used to sectionalise the pipeline and thereby reduce the accumulated voltage in a parallelism. They can also be used to prevent transferred potentials, for example on pipeline spurs or tees. As each section created requires a separate CP station, this mitigation method can be uneconomical. Isolating flanges are typically rated less than 15 kV, and a surge diverter with a 1.2 kV breakdown voltage is usually supplied with the unit to prevent damage to the flange in case of voltage surges. Breakdown may not occur during earth faults, as this would defeat the purpose of the isolating flange. Isolating flanges are not effective with pipelines transporting water or other conductive media, unless an inner lining with the appropriate dielectric properties is used. When installed in areas where stray d.c. currents are expected, isolating flanges must be housed in an underground chamber to prevent potentially large d.c. currents bypassing the flange through the surrounding soil, causing localised corrosion. #### 3.7.1.9 Pipeline coatings and coating integrity surveys The most beneficial pipeline coating type from an a.c. mitigation viewpoint depends on the type of coupling that is most pronounced or problematic. Inductive coupling levels and transferred potentials can be significantly reduced by low resistivity coatings such as bitumen or modified bitumen, especially on long pipelines. ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **54 of 96** Conductive coupling and d.c. leakage in particular is, on the other hand, greatly reduced or even effectively eliminated by the use of high resistivity PE, rigid PU or epoxy coatings. These coatings are also more tolerant of high voltage gradients during earth faults and would hence be preferred if the pipeline is very close to a number of power line towers. Increasing the coating thickness near power line towers can also be a very effective method of mitigation, as this reduces the risk of coating damage. This can be done during the coating process at the supplier, or by a procedure referred to as armour wrapping, where membrane layers and bitumen are applied over the existing coating on site. The risk of having any significant coating defects near tower footings may be further mitigated by a post-installation coating integrity (e.g. DCVG) survey to locate and repair any coating defects. #### 3.7.1.10 Location selection of anode ground beds Anode ground beds should preferably be located at least 1 km away from any earthed power installation, and with the pipeline positioned in between them. In practice their location is confined to a areas of low earth resistivity with an available LV or MV supply point, and maintaining this separation with power lines is not always possible. Locating the anode bed close to substations is never advisable as in this can cause a much larger current to enter the power system
through the earthing grid, given the grid's lower impedance and greater footprint. All the towers of the power lines connected to the substation then become the drain points and therefore potential corrosion sites. #### 3.7.2 Mitigation measures applicable to power lines #### 3.7.2.1 Routing of the power line Re-routing the power line away from the pipeline may be an option for new power lines. See 3.7.1.1. #### 3.7.2.2 Use of ACSR as power line earth wires Using ACSR instead of steel earth wires on power lines improves the screening factor for inductive coupling during earth faults. By suitable selection of conductor type, a 40 % to 60 % reduction of the induced voltage is usually achievable. Using ACSR earth wires also results in an important reduction of a faulted tower's EPR, and therefore the level of conducted coupling from power line towers. #### 3.7.2.3 Use of power cables with improved screening factor Inductive coupling from MV/HV power cables can be reduced by selecting a cable with an improved screening factor, for example cables with thick aluminium sheaths. #### 3.7.2.4 Employ a power system with isolated or high impedance neutral Power lines with isolated or high impedance transformer neutrals have significantly lower earth fault current levels than power lines with earthed transformer neutrals. This method concerns voltages induced during earth faults, and may be an option for certain MV and HV power systems. #### 3.7.2.5 Use of phase arrangements to reduce steady-state coupling When the power line carries two or more circuits, an appropriate choice of phase arrangement can result in a significant reduction of the steady-state induced voltages, if this option is available. For example, for vertical 2 circuit configuration, the phase sequence of circuit 1 (e.g. RWB) should be the opposite of the phase sequence of circuit 2 (e.g. BWR). Changing phase arrangements is not effective for reducing induced voltages during earth faults. ## **GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF** **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **55 of 96** #### 3.7.2.6 Earth wire isolation to prevent tower footing corrosion Isolating the towers in the EPR zone of a d.c. energised pipeline or anode ground beds prevents the circulation of d.c. currents on the earth wires and the associated corrosion. #### 3.7.2.7 Sacrificial anodes to prevent tower footing corrosion Magnesium or zinc anodes connected to the tower footing or guy anchors when the positive d.c. potential shift exceeds the required 200 mV limit, will prevent damage to the footing. Anodes for this purpose have to be designed according to the actual soil characteristics and the measured d.c. potential shift with the maximum CP current applied. #### 3.8 Safe working procedures in power line servitudes #### 3.8.1 Appointment of Electrical Safety Officer (ESO) - **3.8.1.1** Prior to any work commencing an Electrical Safety Officer (ESO) shall be appointed by the PO or the PO's agent. This person shall: - a) be the designated safety officer for the project, - b) have completed Eskom's ORHVS responsible person training course, - be authorised by a ORHVS authorised person (GMR2.1) to work without constant supervision in a power line servitude, - d) have completed the SAECC Electrical Safety Officer training course, - have experience in the supervision and management of temporary mitigation measures during pipeline construction, and - be furnished with the authority and equipment required to implement and maintain safe working conditions. - keep a record of any non-compliance and advise the construction manager and the project safety officer. #### 3.8.2 General Safe Working procedures - No person, equipment or machinery shall enter the HV/EHV servitude without the approval of the ESO. All affected areas shall be suitably demarcated and access restricted to those personnel who have been advised of the hazards and requirements when working underneath or adjacent to HV/EHV power lines. - All personnel shall be made aware of and be able to recognize the potential shock hazards and be trained in the approved safety procedures. - Pipeline construction personnel shall avoid contact with HV/EHV structures and supports. No mechanical equipment shall come closer than 5 m from any power line tower. - 4) Direct connections to the power line tower structures or buried counterpoise earthing system are not permitted under any circumstances. The earthing systems of the power line and the pipeline must be kept separate. - 5) Temporary construction sheds, trailers, living quarters, pipe sections, storage areas or vehicle fuelling facilities are not permitted in the HV/EHV servitude. ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **56 of 96** No mechanical equipment, including mechanical excavators or high lifting machinery, shall be used in the vicinity of Eskom's apparatus and/or services, without prior written permission having been granted by Eskom. If such permission is granted the applicant must give at least seven working days prior notice of the commencement of work. This allows time for arrangements to be made for supervision and/or precautionary instructions to be issued. The internal assessor must provide the applicant with the details of an Eskom person to be contacted in this regard. - 7) All rubber tyre construction vehicles used in the HV/EHV servitude shall be equipped with a steel chain secured to the chassis at one end and freely dragging on the earth at the other, to discharge any electrostatic build-up. - 8) The minimum vertical clearance between construction equipment and overhead conductors shall be in accordance with Table 15. The actual height of the conductors at their lowest point shall be measured by means of optical measuring equipment to ensure that this minimum clearance is achieved. Table 15: Minimum vertical clearance underneath power line conductors | Nominal r.m.s. voltage (kV) | 66 | 88 | 132 | 220 | 275 | 400 | 533 d.c. | 765 | |--------------------------------|-----|-----|-----|-----|-----|-----|----------|-----| | Minimum vertical clearance (m) | 3.2 | 3.4 | 3.8 | 4.5 | 4.9 | 5.6 | 6.1 | 8.5 | (from Regulation 15 of the Electrical Machinery Regulations of the OHS Act (Act 85 of 1993)) - 9) Vehicles such as mobile cranes with extendable members that can potentially exceed this minimum vertical clearance height shall be identified and the operators issued with specific instructions with regard to the maximum permissible extension, prior to doing any work in the HV/EHV servitude. - If for any unforeseen reason, the life-threatening situation occurs where a construction vehicle comes into contact with a live HV/EHV conductor or a flash-over occurs, the operator(s) shall remain inside the vehicle and attempt to get it out of the contact situation using ONLY the vehicle's own power. On NO account shall the operator(s) leave the vehicle and on NO account shall any person approach the vehicle, until the contact situation has been reversed, or until the ESO has received confirmation from the electricity utility that the power line has been de-energized. Arcing may temporarily stop due to the action of the protection, however this in itself shall NOT be taken as an indication that the line is safe, since the line may automatically attempt to re-energize. Effective assistance in this situation entails ensuring that all persons present maintain a safe distance from the vehicle (>10 m) and alarming the electricity utility's operational centre. - Any foreign metal structures exposed during trenching inside or alongside HV/EHV servitudes shall be treated as a live electrical conductor, until measurement proves otherwise. The pipeline shall not be bonded any foreign structures without an assessment by a qualified engineer and written permission from the owner. - 12) The use, storage, disposal, treatment or generation of any hazardous substances shall not be permitted in the power line servitude. #### 3.8.3 Daily measurements - Qualified personnel shall measure and record the pipeline voltage to earth to verify that conditions are safe to work (a.c. < 15V r.m.s.), on all sections and on each day prior to the commencement of any construction or other activity involving contact with the pipeline. - 2) For pipeline voltage measurements, a voltmeter of suitable range and impedance shall be used. Low resistance earth connections shall be used to avoid induction or capacitive pickup on test leads and related items that could result in erroneous readings on a high impedance instrument. A suitable reference is a metal rod driven into the earth. ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **57 of 96** Test leads shall be attached to the instrument first and then to the pipeline. After measurement, the leads shall be removed from the pipeline first and from the instrument last. - 4) Each time a voltage measurement is made, the following data shall be recorded: - i. location, - ii. time, - iii. date, and - iv. pipe-to-earth voltage. #### 3.8.4 Temporary earthing - 1) Pipelines exhibiting voltages greater than 15 V r.m.s. shall be earthed with temporary driven earth rods. Pipelines parallel to a.c. power systems shall be earthed opposite the midpoint of each span, maximising the distance to the nearest HV/EHV structure. - 2) The temporary connections to the pipeline shall be made with earthing clamps that apply firm pressure at the contact point with a mechanically sound connection, and with the coating at the contact point removed down to the bare metal. - 3) The connection between the earthing clamp and the earth rod shall be made with 25 mm² stranded copper cable, green PVC insulated. - 4) To prevent the risk of personal injury or arc burns, the connection and
disconnection of temporary earths shall be carried out in the following order: - a) connection: - i. the earthing clamp is connected to the pipeline, - ii. the earthing cable is connected to the earth rod, - iii. the earthing cable is connected to the earthing clamp. - b) disconnection: - i. the earthing cable is disconnected from the earthing clamp, - ii. the earthing cable is disconnected from the earth rod, - iii. the earthing clamp is removed from the pipeline. - 5) Temporary earths shall be left in place until immediately prior to backfilling. Sufficient temporary earths shall be maintained on each section until adequate permanent grounding connections have been made. - 6) When the pipeline voltage remains above 15 V r.m.s. in spite of the temporary earth rods, temporary earth mats that extend a minimum of 1 m outside the work area shall be used. The connection between the pipeline earthing clamp and the temporary earth mat shall be made with 16 mm2 or larger stranded copper cable. There shall be no contact between persons over the earth mat and those not over the mat, including the handing over of tools or materials. #### 3.8.5 Bonding of isolating flanges, joints and couplings - 1) Work on isolating flanges, joints, or couplings shall only proceed after the AC status has been verified. A temporary bond across the flange or the use of a properly sized temporary earth mat shall be used to protect personnel while they work on the pipe. - 2) When cutting a pipeline, adequate bonding across the point to be cut shall be used, irrespective of the AC voltage measured between the pipeline and earth. When this voltage exceeds 15 V r.m.s, additional earthing shall be installed BEFORE cutting commences. ## **GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF** **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **58 of 96** #### 3.8.6 Precautions during coating and lowering-in operations 1) Where coating is to be applied at field joints, precautions shall be taken to ensure that equipment contacting the bare pipe is adequately bonded and earthed. 2) For the lowering-in operation, the coated pipeline shall be handled with nonconductive slings. Because the coated pipeline may not be effectively earthed during part of this operation, contact with the bare portion of the pipeline shall be avoided when the support slings are removed from the end of the pipeline. #### 3.8.7 Work stoppage - 1) The ESO shall have liaison with the electrical utility to determine planned switching, outages, and load changes that may affect pipeline voltage. Work involving contact with the pipeline shall be stopped during scheduled switching of the electric power system. - 2) WORK SHALL BE STOPPED WHEN ANY LIGHTNING ACTIVITY IS PRESENT. # 3.9 Inspection and testing and of pipeline a.c. mitigation components prior to commissioning - a) When the a.c. mitigation measures agreed upon by the Eskom and the Pipeline Operator have been installed, an Eskom representative shall be permitted to inspect all the components of this installation and to perform necessary measurements according to the inspection sheet provided in annex E. - b) Final approval of the a.c. mitigation installation is subject to the outcome of this inspection. # 3.10 Long term maintenance requirements of pipeline and power line a.c. mitigation components - a) The a.c. mitigation measures shall be maintained by regular inspection and measurement of the effectiveness of the measures. The interval between inspections shall not exceed 6 months. - b) Maintenance personnel shall be provided with special training to acquaint them with the a.c. mitigation components, measurements and safety requirements. - c) Clear and detailed maintenance records shall be kept available for inspection by an Eskom representative for the full operational lifetime of the pipeline. #### 4. Authorization This document has been seen and accepted by: | Name and surname | Designation | | |------------------|---|--| | V Singh | Power Plant Technologies Manager | | | AA Burger | Chief Engineer – Eskom Lines Engineering Services | | | B Haridass | Chief Engineer – Eskom Lines Engineering Services | | | L Motsisi | Eskom Land Development | | | E Grunewald | TX Land Development Manager | | | C Meintjies | Land Development Manager: Central | | | S Mabaso | Land Development Manager: Central | | | N Purdon | Land Development Manager: Eastern | | ## **GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF** **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **59 of 96** | Name and surname | Designation | | |------------------|--------------------------------------|--| | B Maudu | Land Development Manager: Northern | | | L Human | Land Development Manager: Northern | | | X Songcaka | Land Development Manager: North West | | | T Smith | Land Development Manager: Southern | | | B van Geems | Land Development Manager: Western | | #### 5. Revisions | Date | Rev. | Compiler | Remarks | |----------|------|------------------|--------------| | May 2015 | 1 | B Druif/A Burger | First issue. | ## 6. Development team This guideline was prepared for Line Engineering Services by a Working Group that comprised the following members: B Haridass Eskom Line Engineering Services A Burger Eskom Line Engineering Services L Motsisi Eskom Land & Rights B Druif EM Consulting P H Pretorius Trans-Africa Projects ### 7. Acknowledgements This work was made possible through funding and opportunity provided by Eskom Holding SOC Ltd, in particular the Transmission Line Engineering Services (LES). Members of the SABS's Power line and Pipeline Working Group that were consulted during the drafting of this guideline were: E Livesly Johannesburg Water (Pty) Ltd T Madonsela Rand Water B Lourence Department of Water Affairs N Webb Isinyithi Cathodic Protection V Sealy-Fisher Isinyithi Cathodic Protection C Ringas Pipeline Performance Technologies (Pty) Ltd A Schwab Pipeline Performance Technologies (Pty) Ltd G Haynes Corrosion & Technology Consultants A Asraf Sasol Gas C Downs Transnet T du Plessis Eskom K R Hubbard Eskom Corporate Services Division ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **60 of 96** V Sewchand Eskom Technology Standardization F Thuynsma Eskom Industry Association Resource Centre T Mundie Eskom Industry Association Resource Centre D Carter LMC Corrosion R Pillay Paradigm Projects (Pty) Ltd M Lebenya Paradigm Projects (Pty) Ltd S Moodley Integrityafrica G Turner Pipe and Tank Africa Consultants A Copley IMESA E Peralta Disa Anodes (Pty) Ltd B Nkambule Ekuhurleni Metro D Raath Cathtect Engineering (Pty) Ltd J Mtombeni SABS GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **61 of 96** ## Annex A - Checklists of particulars required #### A.1 - Pipeline Details | 1.1 | Pipeline name: | | | | |---|---|--|--|--| | 1.2 | Pipeline construction start date: | | | | | 1.2 | Pipeline construction completion date: | | | | | 1.3 | Pipeline pumped product(s): | | | | | | Pipeline outer diameter (mm): | | | | | 1.4 | Wall thickness (mm): | | | | | 1.4 | Wall material: | | | | | | Section lengths if sectionalised (m): | | | | | 1.5 | Pipeline height / burial depth @ centreline (+/- m): | | | | | | Pipeline or appurtenances exposed to the public? Y/N | | | | | | Coating type and material: | | | | | | Thickness (mm): | | | | | 1.6 | Final insulation strength (kV): | | | | | | Resistivity (Ω .m) <i>OR</i> Specific Resistance (Ω .m ²): | | | | | | Relative permittivity: | | | | | 1.7 | Pipeline route map or .kmz attached (see Note 1): | | | | | 1.8 | All available soil resistivity data attached: | | | | | 1.9 | Details of cathodic protection attached (see Note 2): | | | | | 1.10 | Details of lightning protection attached (e.g. spark gaps, surge protectors across isolating joints): | | | | | 1.11 | Drawings of valve chambers, pump stations, reservoirs, test post, etc. attached, showing structural steel and other earthing, and final height/level: | | | | | 1.12 | Details of any existing adjacent pipelines, cables, railways and other earthed structures attached: | | | | | 1.13 | Details of all construction vehicles to be used in power line servitude (incl. maximum extended height of booms, vehicles causing excessive vibration etc.) attached: | | | | | 1.14 | Details of activities which will occur (e.g. excavation, blasting, lifting by crane, maintenance inspections by helicopter etc.) provided (see Note 3): | | | | | NOTE 1: Clearly indicate the location of all bend points, pump stations, reservoirs, tanks, valve chambers, off takes, test posts and isolating joints NOTE 2: For ICCP systems, indicate the location and DC current of all anode ground beds and the maximum CP current density expected on the pipeline | | | | | | NOTE 3: For blasting within 500 m of Eskom's structures, use separate application in TPC41-1078 | | | | | | Approv | <u>/ed by</u> : <u>Date:</u> | | | | Pipeline Applicant / Technical Representative: ## **GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF** **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: 62 of 96 | | | Line Name Voltage Level | Tx, Dx or other? | |----------
---|---|------------------| | 2.1 | Existing and planned power lines or cables crossing or running parallel to the pipeline, within 6 km separation distance for overhead lines or 1 km for cables (ignore overhead lines below 44 kV and cables below 11 kV) | | | | | 1 | | | | | Existing and planned | Substation Name Voltage
Level | Tx, Dx or other? | | | substations within 3 km separation | | | | 2.2 | distance from the pipeline | | | | 2.2 | (ignore substations with overhead lines | | | | | below 44 kV only or with cables below | | | | | 11 kV only) | | | | <u> </u> | | | | | | | | | | 2.3 | Maps showing route of (alternatively the .kmz, . | elevant lines/cables and location of substations attached gdb or .dxf route files): | | | 2.3 | Maps showing route of relevant lines/cables and location of substations attached (alternatively the .kmz, .gdb or .dxf route files): | | |-----|--|--| | | | | | Approved by: | Date: | | | |--|-------|--|--| | GIS Specialist / Land & Rights representative: | | | | | GIS Specialist / Land & Rights representative. | | | | ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **63 of 96** ## A.3 - Overhead power line details (complete for each overhead line listed in A.2.1) Figure A.1 - Plan view of power line | 3.1 | System Voltage (V r.m.s., phase-phase): | | |-----|---|------------| | 3.2 | Station A:
Station B: | | | 3.3 | Number of circuits: | | | 3.4 | Power line total length (km):
Start of exposure at (km):
End of exposure at (km): | | | 3.5 | Transposition(s) at (km) (or None): | | | 3.6 | Dominant tower type no. in exposure zone: Tower sketch attached showing phase and earth conductor attachment height and separation (Y/N): Avg. span length (m): Avg. conductor sag at midspan (m): Avg. tower footing resistance (ohm): | (see Note) | | 3.7 | Phase conductor type and trade name: Number of sub-conductors: Spacing between sub-conductors (m): Earth wire conductor type and trade name: Earth wires insulated from towers at tower number(s) (or None): | | | 3.8 | Peak load current (A r.m.s.): Emergency load current (A r.m.s.): Maximum load unbalance between phases (%) | | **NOTE:** Indicate conductor phases (R/W/B) on sketch (at start of exposure, looking towards station B, and if applicable, after each transposition in the exposure) | Approved by: | Date: _ | | |---|---------|--| | Power Line Design / Engineering representative: | | | ## **GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF** PIPELINES AND POWER LINES Unique Identifier: 240-66418968 Revision: 1 Page: **64 of 96** | A.4 | l - 1 | Fai | ılt | CIII | ren | t I | eve | els | |-----|-------|-----|-----|------|-----|-----|-----|-----| | | | | | | | | | | | | | Line Name | Sub Start fault
level (kA) | Sub End fault
level (kA) | |-----|---|--------------------|-------------------------------|-----------------------------| | | | | | | | | | | | | | | Maximum 1 phase-earth fault level at each | | | | | 4.1 | substation of each power line listed in 2.1 over next | | | | | | 20 years, on the busbar connected to the line | I | | | | | Out of offers News | Maximum fault | On busbar of | | | | Substation Name | current | voltage | | | | Substation Name | (kA) | (kV) | | | | Substation Name | | _ | | | Maximum 1 phase – earth fault current at each | Substation Name | | _ | | 4.4 | earth fault current at each substation listed in 2.2 | Substation Name | | _ | | 4.4 | earth fault current at each | Substation Name | | _ | | 4.4 | earth fault current at each substation listed in 2.2 | Substation Name | | _ | | 4.4 | earth fault current at each substation listed in 2.2 | Substation Name | | _ | | 4.4 | earth fault current at each substation listed in 2.2 | Substation Name | | _ | | 4.4 | earth fault current at each substation listed in 2.2 | | | _ | #### **ESKOM COPYRIGHT PROTECTED** Power Line Design / Engineering representative: _______ **GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF** **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **65 of 96** ## **Annex B – Specification of Mitigation Components** #### B.1 Gradient control wire Gradient control wires shall be zinc ribbon. The composition of the zinc shall be as per ASTM B418 – 95 – Type II, with a steel wire inner core. The ribbon shall be of the following specification: a) Cross section (D1 x D2): 12.7 mm x 14.3 mm b) Radii (R1 x R2): 2 mm x 5 mmc) Zinc weight: 0.89 kg/md) Core wire diameter: 3.3 mm e) Potential: -1.1 V vs. Cu/CuSO₄ electrode f) Capacity: 780 Ah/kg The gradient control wire, where required, shall be installed in the corners of the trench. Fig B.1 shows a section with two gradient control wires. A minimum lateral separation distance to the pipeline of 200 mm shall be maintained. In the case of a single gradient control wire, the wire shall be installed in either corner of the trench. The gradient wire shall be covered with either native soil (sifted if necessary) or with a gypsum / bentonite mixture, prior to the bedding material. The gradient control wire shall comprise discrete sections of up to (but not exceeding) 400 m in length. The ends of successive sections shall not be in direct contact. The connection to the pipeline shall be made near the centre of each section, using a d.c. decoupling device for ICCP equipped pipelines, or a direct bonding link when no ICCP is used and the gradient control wires are used as sacrificial anodes. Figure B.1 - Installation of gradient control wire in trench ## **GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF** **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **66 of 96** #### B.2 Decoupling devices for gradient control wire For pipelines equipped with ICCP systems, the zinc ribbon shall not be connected to the pipeline directly but only through a solid state d.c. decoupling device, housed in a valve chamber or a dedicated a.c. mitigation station. The device shall be certified by a suitably accredited test laboratory to meet the specifications given in Table B.1: Table B.1 - Performance specification for d.c. decoupling device for gradient control wire | Specification / Test | Level / Requirement | Comment | |--|--|---| | 1) Class I impulse current rating | 10 kA, 10/350 μsec | to SANS 61643-1 requirement | | 2) Front of wave spark-over voltage | ≤ 500 V, 1.2/50 µsec | to SANS 61643-1 requirement | | 3) Rated a.c. short circuit | 3.7 kA r.m.s., 1 sec, 50 Hz | to SANS 61643-1 requirement | | 4) Rated a.c. load current | 45 A r.m.s., 50 Hz, max temp incr. 40° C | at maximum d.c. blocking voltage, to SANS 61643-1 requirement | | 5) a.c. impedance | ≤ 0.04 Ohm | at rated load current | | 6) d.c. blocking voltage | -12 V/+1V (+/- 10%) | If not influenced by spurious d.c. (railway, anode ground bed), reduce to -3V/+1V | | 7) d.c. leakage (blocked) | ≤ 1 mA | at a.c. load thermal limit | | 8) d.c. current withstand | 60 A for 15 mins | without overheating, test in both directions | | 9) Housing dielectric withstand voltage | 5.8 kV | to SANS 61643-1 requirement | | 10) Environmental, enclosure | IP55 | adjust upwards for more extreme environments | | 11) Ambient temperature range | -15° C to 60° C | | | 12) Air clearance and creepage distances | 10 mm, 15 mm min resp. | to SANS 61643-1 requirement | | 13) Protection against direct contact | no direct contact | using IEC60529 test finger | Additional requirements for the d.c. decoupling device are: - a) The decoupling device shall comprise a suitably rated diode stack capable of blocking direct current in both directions at the specified voltages. - b) The device shall exhibit a progressive, smooth transition from blocking to conduction and vice versa without commutating. - c) A bypass capacitor (network) shall be connected in parallel with the diode stack to conduct 50Hz a.c. up to the blocking voltage of the diode stack. - d) The capacitor and diode network shall be protected by a suitably rated SPD for high voltage and lightning-induced transients. The SPD shall be decoupled from the capacitor and diode network with the appropriate inductance, in accordance with SANS 61312-3. This inductance shall remain effective (i.e. not saturated) during simultaneous transient and maximum d.c. current conditions. - e) The decoupling device shall preferably be of open frame construction to permit maintenance and replacement of component parts. The frame shall be sized to fit on a standard 800 mm x 600 mm chassis plate. - f) The decoupling device shall be provided with two M10 terminals at each installation point for the connection of 25 mm² single core cables. ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **67 of 96** g) If housed in a location classified as hazardous in SANS 10108 and ARP0108, for example in case of gas or fuel pipelines, the decoupling device
shall be explosion proof (Ex-rated). The nature of the Ex-rating required and the applicable test standard shall be determined by a specialist following a classification study in accordance with SANS 10108. #### B.3 Valve chamber gradient control Gradient control mats may be implemented with zinc spirals or with steel weld mesh mats. An example of a steel weld mesh mat around a valve chamber is shown in Fig B.2. The following is required: - a) A 200 mm x 200 mm weld mesh, of 6 mm diameter steel wire, not galvanized, extending 1.2 m beyond the external wall of the chamber. - b) All overlaps shall be 100 mm minimum, joined at two (2) places with crimped ferrules. - c) For 2 m circular chambers the weld mesh shall be two overlapping panels with a circular cut-out to achieve a 4.4 m x 4.4 m square surround. - d) The weld mesh is centrally located in a 85 cm, 15/19 MPa concrete encasement. - e) The minimum depth of the weld mesh is 300 mm below normal ground level. - f) The panels are connected to the pipeline with at least two (2) cables through a voltage limiting device, cables kept as short as possible (1 m or less). - g) Continuity of the floor reinforcing is established with 2 bars at right angles welded to each bar, or by including a weld mesh layer cut to the floor size, above the structural re-bar. - h) Continuity of the wall reinforcing is established with a continuity ring is installed just below roof height and welded to each vertical bar, and equipped with a connector plate protruding through the wall. - i) The connector plate is connected to the pipeline with two (2) cables through a voltage limiting device, cables kept as short as possible (≤ 1.5 m). - j) If there is any likelihood of a galvanic cell forming between the steel reinforcing bar and the external weld mesh (i.e. dissimilar metals or dissimilar concrete encasement), two separate voltage limiting devices shall be used, as shown in Fig B.2. - k) For air valves with the chamber situated above the pipeline, the mat may be installed at the same depth as the chamber floor. - For air valves using pre-cast concrete rings as walls, the steel reinforcing is generally inaccessible and only the reinforcing in the concrete floor is connected to the pipeline. ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **68 of 96** Figure B.2 - Valve chamber with external weld mesh gradient control mat ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **69 of 96** When the step and touch voltages around the chamber do not exceed the values indicated for asphalt cover in table 1, the external gradient control mat may be replaced by external asphalt cover, as shown in Fig B.3: Figure B.3 - Valve chamber with external asphalt cover and internal gradient control mat Fig B.3 also shows an alternative internal arrangement, suitable when access the steel reinforcing it is not possible. This method would be applied to existing valve chambers, to new valve chambers without reinforcing steel or when for engineering reasons, the reinforcing bars cannot be welded. The installation requirements in this case are: - m) compact soil and install asphalt cover of 100 mm or thicker, extending to 1.2 m around the chamber, suitably sloped for surface water dispersion away from chamber (2° min). - n) use 500 µm thick PVC sheet below asphalt to prevent weed growth through cracks etc. - o) install weld mesh cut-out on chamber floor, comprising 200 mm x 200 m x 6 mm diameter steel weld mesh, not galvanized, - where required, weld mesh sections overlap by at least 100 mm, connect with at least two (2) crimped ferrule connections, - q) at least two (2) cable connections to the weld mesh, - r) weld mesh embedded in a thin (3 cm) layer of screed, sloped as required for water dispersion, - s) use VLD to connect the weld mesh to the pipeline using at least two (2) connections, - t) all cables kept as short as possible (≤ 1.5 m). #### B.4 Voltage limiting devices for gradient control mats For pipelines equipped with ICCP systems, the gradient control mats or valve chamber reinforcing steel shall not be connected to the pipeline directly but only through a voltage limiting device. A low-voltage, solid-state SPD (e.g. a MOV or GDT) shall be used for this purpose. The device shall be certified by a suitably accredited test laboratory to meet the specifications given in Table B.2: ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **70 of 96** Table B.2 - Performance specification for VLD for gradient control mats | Specification / Test | Level / Requirement | Comment | |--|-----------------------------|--| | 1) Class I impulse current rating | 10 kA, 10/350 µsec | to SANS 61643-1 requirement | | 2) Front of wave spark over voltage | ≤ 500 V, 1.2/50 µsec | to SANS 61643-1 requirement | | 3) Response time | ≤ 25 nsec | | | 5) Short circuit withstand | 3.7 kA r.m.s., 1 sec, 50 Hz | to SANS 61643-1 requirement | | 6) Housing dielectric withstand voltage | 5.8 kV | to SANS 61643-1 requirement | | 7) a.c. clamping voltage | 75 V r.m.s. (+/- 10%) | | | 8) d.c. breakdown voltage | 100 V (+/- 10%) | | | 9) d.c. leakage (blocked) | ≤ 1 mA | | | 10) Environmental, enclosure | IP55 | Adjust upwards for more extreme environments | | 11) Ambient temperature | -15° C to 60° C | | | 12) Air clearance and creepage distances | 10 mm , 40 mm resp. | to SANS 61643-1 requirement | | 13) Protection against direct contact | no direct contact | using IEC 60529 test finger | If housed in a location classified as hazardous in SANS 10108 and ARP 0108, for example in case of gas or fuel pipelines, the SPD shall be explosion proof (Ex-rated). The nature of the Ex-rating required and the applicable test standard shall be determined by a specialist following a classification study in accordance with SANS 10108. #### B.5 Cabling For connecting of d.c. decoupling devices to the pipeline, insulated 25 mm² copper earth cables (Cu/PVC) shall be used. For connection of VLDs to the pipeline, insulated 16 mm² copper earth cables shall be used. Copper earth cables shall have a green and yellow colour combination, shall be doubled for redundancy and shall be kept as short as possible, not exceeding 1.5 m in length. The cable to zinc and cable to weld mesh connections shall comprise of a suitably sized ferrule crimping the cable connection to the weld mesh or to the exposed anode core wire of the zinc ribbon, silver soldering and use of an approved, self-vulcanizing butyl rubber tape to cover over the joint area. **GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF** **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **71 of 96** ### Annex C – Worked Example #### C.1 Introduction This worked example concerns a bulk water pipeline in the Steelpoort valley which forms one component of the Olifants River Water Resources Development Project (ORWRDP), which was initiated in 2003 to cater for the increasing water requirements of the Limpopo and Mpumalanga Provinces. #### C.2 Pipeline description This 40.8 km long steel pipeline between the new De Hoop dam and a pump station in Steelpoort is exposed to a number of planned and existing power lines, ranging from 400 kV to 132 kV (see Fig C.1). It also traverses very close to a main transmission 275 kV substation, Senakgangwedi (see Fig C.2). It is interconnected to an existing pipeline at Spitskop pump station and balancing dam, and share its route from there onwards towards Steelpoort pump station. The new pipeline varies in diameter, starting at 1.8 m at De Hoop and reduced successively down to 1.3 m at Steelpoort pump station. It will be cathodically protected using an ICCP system with the planned location of the anode ground beds indicated as GB1-3 in Fig C.1. A number of take-offs serve the mines and communities along the pipeline's length. These take-offs are electrically isolated from the main pipeline with insulating flanges. The pipeline is buried at 1.5 m depth and coated with a 5 mm bitumen – based Bituguard layer. It is not exposed to the public. #### C.3 Power line description The characteristics of the power lines influencing the pipeline are listed in Table C.1. Senak Tubatse -Merensky -Merensky -Arnot -Merensky -Senak Power line: Merensky gangwedi Tubatse 2 Uchoba Merensky (future) gangwedi - Simplon Voltage rating (kV) 400 kV 400 kV 275 kV 275 kV 132 kV 132 kV Phase conductors 2 x Dinosaur 1 x Wolf 1 x Wolf 4 x Tern 2 x Dinosaur 2 x Zebra 2 x 19/2.64 2 x 19/2.64 2 x 19/2.64 2 x 19/2.64 2 x 7/2.64 $2 \times 7/2.64$ Earth wires mm steel mm steel mm steel mm steel mm steel mm steel t.b.a. 510A 419A 419A 248 Tower type 259 vertical horizontal horizontal horizontal horizontal horizontal **Transpositions** none none none none none none Table C.1 – Power lines influencing the pipeline The planned Tubatse – Merensky 400 kV line will run closely parallel to the pipeline for 14 km from De Hoop dam and again for 2 km near Merensky substation. A 510A type tower was assumed for this line for the purpose of simulations. ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **72 of 96** Figure C.1 – Pipeline and power line route overview **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **73 of 96** Figure C.2 - Pipeline route detail near Senakgangwedi substation Figure C.3 – Pipeline route detail near Steelpoort pump station #### C.4 Determination of applicable limits ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **74 of 96** The existing 400 kV and 275 kV lines are equipped
with teleprotection, with a resultant cumulative fault duration of 0.2 sec or less (see Table 2). The new 400 kV line will be similarly equipped. The two 132 kV lines use stepped distance protection, with a worst-case cumulative fault duration of 0.5 sec. To ensure a conservative design however, a total cumulative fault clearance time of 1 sec is assumed for all the power lines. From Table 1, the resulting safety voltage limits for occupational exposure during earth faults are 60 V r.m.s. (touch) and 135 V r.m.s. (step), with no surface layer modification. With an asphalt layer, these values increase to 640 V r.m.s (touch) and 2 400 V r.m.s. (step). For the bitumous coating, the maximum permissible coating stress is 900 V r.m.s. For steady state conditions, the touch voltage is limited to 15 V r.m.s. during emergency load. The a.c. corrosion voltage limits adopted by the pipeline operator are 10 V r.m.s. and 4 V r.m.s, for areas with soil resistivities larger or smaller than 25 ohm.m respectively, applicable during normal load. #### C.5 Determination of zones of influence The ZOI for *inductive coupling* is 31.7 km, from Eqn (1) (see 3.4.2.1). with $V_{max} = 60 \text{ V r.m.s.}$, $k_u = 1$, $k_p = 0.8$, $l_f = 20 \text{ kA r.m.s.}$, $L_p = 20 \text{ km}$ and $\rho = 1 000 \text{ ohm.m.}$ The ZOI for conductive coupling from the substations is 6.5 km, from Table 4, for a 200 m x 200 m rural substation and with the voltage limit adjusted from 300 V r.m.s. to 60 V r.m.s. The ZOI for *conductive coupling from power line towers* is 1.15 km, from Table 5, for a power line with steel earth wires and 500 ohm.m surface resistivity, again adjusted to a 60 V r.m.s. voltage limit. The ZOI of the anode ground bed is 1 775 m, from Eqn (4), for a 60 m anode energised to 50 V, for a maximum EPR of 200 mV. The ZOI of the *pipeline* in terms of d.c. leakage is 330 m, from Table 6, for an assumed maximum protection current density of 500 A/m² and a soil surface resistivity of 500 ohm.m. With all these zone limits exceeded, soil resistivity measurements were required for the detailed calculations of each case. #### C.6 Soil resistivity analysis Surface resistivity measurements were made at 100 m intervals along the pipeline route with a Wenner array and 2 m probe spacing. The surface resistivity was found to be relatively low, averaging at 50 ohm.m and with a number of sections having a resistivity less than 25 ohm.m (see Fig C.4). Deep soil resistivity measurements were made at the sites labelled DSR01 – DSR10 in figs C.1 - C.3., using a CVES linear array of 12 electrodes spaced at 10 m intervals. The subsequent analysis of the resulting data showed that the soil in this area can be accurately represented by just three layers, with the upper two layers in the range 6 ohm.m – 150 ohm.m and the lower (infinite) layer in the range 90 ohm.m – 1000 ohm.m. ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **75 of 96** #### Olifants River Water Resource Development Project Phase 2 Soil Resistivity Survey (Phase 2C) (07 December 2010 - 14 December 2010) Figure C.4 – Surface resistivity along pipeline route (starting at De Hoop dam) #### C.7 Software used The inductive coupling simulations were performed using a Mathcad software module developed for Eskom/TAP by EM Consulting. The conductive coupling simulations were performed with CDEGS software modules RESAP, MALT and MALZ, developed by Safe Engineering Services (SES), Canada. #### C.8 Sliding fault current calculation The sliding fault current profile of all the respective power lines was calculated using the power line details of Table C.1 and the power system parameters provided by Line Engineering Services, representative of the network in 2022. The resulting sliding fault current profile for the planned Tubatse – Merensky 400 kV line, which will have the strongest influence on the pipeline, is as shown in Fig C.5 With more accurate information not yet available, identical span lengths of 400 m are assumed for this line, and a nominal tower footing resistance of 40 ohm is used on all towers. #### C.9 Determination of worst fault location Considering the route layout in combination with the fault current levels of Fig C.5, worst induction is most likely to occur for a fault at either DSR01 or DSR03, supplied from Merensky; calculation at both confirmed that a fault at DSR01 produces the highest induction levels. This corresponds to tower number 72. ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **76 of 96** Figure C.5 - Sliding fault current profile on Tubatse-Merensky 400 kV line #### C.10 Determination of tower voltages and currents In terms of TST 41-321, the earth wires of the Tubatse – Merensky 400 kV line will be isolated from towers within 800 m of the pipeline route, and each tower isolator equipped with a 12 kV spark gap. Accordingly, these towers are initially removed from the simulation model. For a fault at tower at 72, the calculated tower voltages and footing currents are as indicated in Fig C.6. The voltage at this tower reaches 26 kV and the current 650 A. Figure C.6 - Tower voltages and currents, fault at tower 72, Tubatse – Merensky 400 kV line (towers within 800 m insulated, with 12 kV spark gaps) ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **77 of 96** At a number of towers equipped with isolators the spark gaps will spark over, i.e. where the voltage exceeds 12 kV. These towers have to be re-inserted into the circuit, in an iterative procedure. At towers 84 – 109 and 150 -161, the voltage remains below 12 kV and these towers remain out of circuit, with a tower voltage of zero, as shown in Fig C.6. #### C.11 Determination of earth wire currents The calculated earth wire currents for the same conditions are shown in Fig C.7. At the faulted tower the current in each earth wire reaches 3.5 kA. This reduces to less than 900 A at a distance of 10 km from the fault. Figure C.7 - Earth wire voltages and currents, fault at tower 72, Tubatse - Merensky 400 kV line #### C.12 Determination of inductive coupling during an earth fault on Tubatse – Merensky 400 kV At this stage the route data is entered, along with the soil resistivity of each section and the pipeline parameters – diameter, wall thickness, wall resistivity, coating thickness, coating resistivity and permittivity. With the fault current and earth wire currents established, it is possible to compute the pipeline voltage and current profile, as shown in Fig C.8. The calculated voltage reaches 1 700 V r.m.s., well in excess of the 900 V r.m.s. coating stress limit for a large section of the pipeline. The touch voltage limits are also exceeded for its entire length. The pipeline current reaches a maximum of 1 450 A r.m.s. ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **78 of 96** Distance along pipeline, measured from De Hoop Dam - Section shunt current to earth (A) (spikes indicate electrode) - · · · Section series current (A) - · · · Section voltage to earth (V) Figure C.8 – Pipeline induction, fault at tower 72 (near DSR01), no mitigation #### C.13 Determination of inductive coupling during an earth fault, other power lines Repeating the same procedure for earth faults on the other lines of Table C.1, it was established that the coating stress and safety limits are similarly exceeded. For the Arnot-Merensky line, a fault near DSR07 produces a maximum of 2 300 V r.m.s. #### C.14 Determination of inductive coupling during steady state conditions Under normal load conditions, the pipeline will be influenced by the currents of all the power lines listed in Table C.1 simultaneously. This calculation is dependent on the phase sequence of the respective phases of the lines. With the actual phase sequence of the future line unknown, and the sequences of the existing lines not made available, the worst-case combination had to be accounted for. Following the procedure described in 3.6.3.1 d) of the main text, starting with the Tubatse-Merensky line and adding further lines one at a time, the resulting worst-case voltage is established as shown in Fig C.9 (red curve), for a 3% current unbalance applied to all the Red phases. The induced voltage on the pipeline for these conditions is well in excess of the 15 V r.m.s. safety limit and the a.c. corrosion limits of 4 V r.m.s. and 10 V r.m.s. respectively. ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **79 of 96** Distance along pipeline, measured from De Hoop Dam - Section shunt current to earth (A) (spikes indicate electrode) - · · · Section series current (A) - · · · Section voltage to earth (V) Figure C.9 – Pipeline induction, influence from all 6 power lines, normal load, 3% unbalance, no mitigation #### C.15 Application of gradient wire and other earthing The nature of the soil, i.e. a low resistivity layer over a higher resistivity layer, is ideally suited for horizontal gradient wire (zinc ribbon). The earthing resistance offered by each section of given length varies in direct proportion to the surface resistivity indicated in Fig C.4, and was calculated accordingly, using Eqn 9 (see 3.7.1.2). The application of the resulting earthing points at the voltage maxima is next undertaken, starting with the normal load simulation which, in this case, is the most challenging to mitigate, mainly due to the very low voltage limits for a.c. corrosion. In areas where the soil resistivity is lower than 25 ohm.m, the 4 V r.m.s. limit is applicable – some of the ribbon sections are hence not at voltage maxima but in low resistivity areas where this limit was exceeded.
Depending on the requirement, the ribbon length was varied from 200 m to 400 m. The resistances of the earth grids at De Hoop dam and Steelpoort pump station are also brought into the a.c. circuit by connecting a d.c. decoupler across the insulating flanges. The off-takes have to remain isolated to prevent unwanted transferred potentials. With all these earthing points connected, the resulting normal load voltage profile is as shown in Fig C.10 (red curve). The resulting voltage profile is generally below 10 V r.m.s. with the exception of some peaks, however all these peaks coincide with a zinc section which raises the local soil potential and thereby reduces the voltage across the coating, to less than 10 V r.m.s. (this was confirmed by a MALZ conductive coupling analysis similar to that discussed in 3.6.11 in the main text). ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **80 of 96** Figure C.10 – Pipeline induction, influence from all 6 power lines, normal load, 3% unbalance, with mitigation Under emergency load conditions, the current increases by a factor of 1.45 for the Tern conductors of Tubatse-Merensky (from Table 10). Assuming, conservatively, that all the power lines operate 1.45 times normal load, the resulting voltage profile will increase by the same factor. The 15 V r.m.s. safety limit is still met under these conditions. Each spike on the horizontal axis of Fig C.10 represents the current drawn from the pipeline by a zinc ribbon section, or by a terminal earth grid, through a d.c. decoupler. The considerable number of earthing points required near Steelpoort pump station is the result of the voltage "ballooning" in this area when the other earths are applied. The maximum current spike level is 40 A r.m.s., which is within the standard d.c. decoupler steady state rating of 45 A r.m.s. (see Table B.2, annex B). The pipeline series current (blue curve) peaks at 106 A r.m.s., however at the insulating flanges at the terminals, the current levels are lower; 4 A r.m.s at De Hoop and 14 A r.m.s at Steelpoort pump station, both well below the d.c. decoupler rating. #### C.16 Determination of inductive coupling during an earth fault, with mitigation Fig C.11 shows the pipeline voltage profile for the same earth fault as in Fig C.8, but with the earthing points connected. The maximum voltage is now reduced to 300 V r.m.s., thus the coating stress limit of 900 V r.m.s. is not exceeded. The 60 V r.m.s. safety limit is however still exceeded. ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **81 of 96** Distance along pipeline, measured from De Hoop Dam - Section shunt current to earth (A) (spikes indicate electrode) - · · · Section series current (A) - · · · Section voltage to earth (V) Figure C.11 - Pipeline induction, fault at tower 72 (near DSR01), with mitigation The induction level was next calculated for a number of other possible fault locations on Tubatse – Merensky and the other power lines. The maximum pipeline voltage was found to occur for a fault on Arnot – Merensky tower 389, reaching 400 V r.m.s. The shape of the voltage profile is then very different to Fig C.11 with the maximum occurring near chainage 3 200 m, i.e. at a minimum in Fig C.11. Shunt current spikes in Fig C.11 are limited to 670 A r.m.s. and no other fault conditions produced a higher current. The 3.7 kA r.m.s fault current rating of a standard d.c. decoupler (see Table B.2, annex B) is therefore sufficient, with a considerable safety margin. From this analysis it was evident that, taking account of the inductive coupling component, the coating stress limit will be met, but further mitigation is required at the pipeline appurtenances to ensure that the safety limit is met. #### C.17 Determination of conductive coupling from power line towers The smallest separation between the power line and any tower footing occurs at tower 4 of the Senakgangwedi – Simplon power line, at a distance of 25 m. The fault current level at this tower is 14 kA, of which 5 kA will return through the footing and the remainder through the earth wires. With the tower footing modelled as described in 3.6.7.1 of the main text, the resulting pipeline coating stress is 1 550 V r.m.s. (see Fig C.12). With the 900 V r.m.s. coating limit thus exceeded, a gradient control wire is required. A single 200 m zinc ribbon section reduces the coating stress opposite this tower to 320 V r.m.s. (see Fig C.13). Unique Identifier: 240-66418968 Revision: 1 Page: **82 of 96** Figure C.12 – Pipeline coating stress during a twr 4 earth fault (5 kA tower energization) – Senakgangwedi – Simplon 275 kV, no mitigation Figure C.13 – Pipeline coating stress during a twr 4 earth fault (5 kA tower energization) – Senakgangwedi – Simplon 275 kV, single 200 m ribbon Comparing figs C.12 and C.13, the potential transfer effect of the zinc ribbon as discussed in 3.6.7.2 and 3.6.11 is clearly evident, with the pipeline coating stress increasing beyond the ends of the ribbon section. This effect is muted however by the bitumen coating's low resistivity, and the maximum voltage remains below 500 V r.m.s. ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **83 of 96** With the coating stress due to inductive coupling less than 100 V r.m.s. for a fault at this tower, the total (inductive plus conductive) stress is less than 600 V r.m.s., i.e. well below the 900 V r.m.s. limit. A similar analysis was performed for other towers close to the pipeline, and similar mitigation measures where required. The results were consistent with the above, but with lower voltage levels. #### C.18 Determination of conductive coupling from substation grids #### C.18.1 Senakgangwedi substation A phase to earth fault in the 275 kV network at Senakgangwedi substation would result in a total fault current of 16 kA r.m.s., taking account of upgrades until 2022 (no planning or case files were available beyond this date). Of this, a maximum of 10 kA r.m.s. will enter the earth mat and the remainder distribute into the earth wires of the connected power lines, determined in accordance with 3.6.3.2 c) of the main text. The earthing grid size is $250 \text{ m} \times 150 \text{ m}$ and the soil represented by DSR06 (comprising of a 22 m thick layer of 6 ohm.m over an infinite lower layer of 125 ohm.m). The resulting earth potential rise (EPR) at the station is 900 V r.m.s. (see fig. C.14). This value is lower than usual for a station of this size, due to the low soil resistivity in this area. Figure C.14 – Senakgangwedi EPR during an earth fault (10 kA grid energization), from centre of earthing grid The lateral distance from the pipeline to the edge of the earthing grid is 22 m. Without mitigation, the resulting maximum pipeline coating stress is 570 V r.m.s. (see fig. C.15). In combination with the inductive component, the coating stress limit is approached, and a single 400 m ribbon section was specified. This reduces the maximum touch voltage to 190 V r.m.s. (see Fig C.16). Unique Identifier: 240-66418968 Revision: 1 Page: **84 of 96** Figure C.15 – Pipeline coating stress during an earth fault (10 kA grid energization) - along pipeline opposite Senakgangwedi, no mitigation Figure C.16 – Pipeline coating stress during an earth fault (10 kA grid energization) - along pipeline opposite Senakgangwedi, single 400 m ribbon ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **85 of 96** In Fig C.16, small voltage discontinuities are observed near the ends of the gradient wire, and some potential is transferred to the pipeline sections beyond the ends. This is however mitigated by the low coating and soil resistivities, making these increases acceptable. #### C.18.2 Merensky substation At Merensky substation, the maximum earth fault level occurs on the 132 kV side, at 31 kA r.m.s. Without mitigation, the maximum pipeline coating stress due to this substation's EPR is 400 V r.m.s., in spite of the 2 030 m separating the pipeline and substation. In combination with the inductive component the total coating stress will, however, remain below the 900 V r.m.s. limit. The already extensive use of zinc ribbon on this section of the pipeline for inductive coupling mitigation will further reduce the conducted component and no additional zinc ribbon is required. #### C.19 Determination of d.c. coupling from the cathodic protection system #### C.19.1 Coupling from pipeline The d.c. potential gradient adjacent to the pipeline was calculated for an average pipeline voltage of -1.5 V d.c. and a surface soil resistivity of 250 ohm.m, representing the higher of the measured values. It is assumed that the coating defects are evenly distributed. The results indicate that a minimum lateral distance of 150 m from the pipeline must be maintained to prevent a soil potential gradient greater than 1 mV/m, which over a 400 m span can result in a d.c. gradient exceeding 400 mV (see Fig C.17). Since this distance is smaller than the 800 m required by the earthing standard TST-41-321, the standard should be maintained, and the earth wires of towers within 800 m of the pipeline should be isolated. Figure C.17 – Earth d.c. potential gradient vs. lateral distance from pipeline, 5 mm Bituguard coating, 250 ohm.m surface soil ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **86 of 96** #### C.19.2 Coupling from anode ground beds The planned location of the anode ground beds is indicated as GB1 – GB3 in Fig C.1 – C.3. Each ground bed consists of a single 60 m horizontal conductor installed in a carbonaceous backfill. The d.c. ground shift was calculated around these
using the soil layers of the respective DSR region. At 10 A nominal CP current, an earth potential rise in excess of +200 mV extends to the following distances around the ground beds: GB1:700 mGB2:900 mGB3:800 m For the power line towers falling inside these distances, isolating the earth wires would prevent hazardous current levels from entering the power lines. None of the planned ground beds can cause a voltage gradient in excess of 400 mV across the legs or anchors of the nearest towers. #### C.20 Pipeline a.c. mitigation requirements From the analysis, it was evident that the applicable steady state limits can be met with selected gradient wire sections and with the earthing systems at the pipeline's extremities connected to the pipeline. It was further evident that the 900 V r.m.s. coating stress limit for fault conditions will be met, but the 60 V r.m.s. touch limit can be exceeded at most of the valve stations and other pipeline appurtenances, depending on the location of the fault, indicating that further localised mitigation is required. Externally, gradient control mats installed around the pipeline appurtenances and connected to the pipeline through appropriately rated VLDs will constitute an effective mitigation method. Alternately, a 10 cm – 15 cm thick asphalt layer can be used around the appurtenances, increasing the touch voltage limit to 640 V r.m.s., a level not exceeded for any of the fault conditions. In addition to the external protection method (i.e. gradient control mat or asphalt layer), further protection is required inside the valve chambers. This may be done by connecting the chamber's reinforcing steel to the pipeline, also through a VLD. For this purpose, the steel reinforcing has to be made galvanically continuous, and equipped with a suitable connection point, prior to concrete casting. The specific requirements are summarised in tables C.4 and C.5. #### C.21 Protection of existing pipeline To prevent hazardous potentials between the new pipeline and the existing pipeline running from Spitskop pump station to Steelpoort pump station, cross-bonds are required at points where simultaneous contact is possible for a maintenance person standing between the pipelines or pipeline attachments. Cross-bonds are also recommended at regular intervals not exceeding 1 000 m, using either resistive or direct bonds or d.c. decoupling devices, as dictated by the cathodic protection system's requirements. The existing valve chambers not equipped with a.c. mitigation require retrofitting with internal earth mats comprising a suitably shaped steel weld mesh cut-out, laid on the floor and encased in a 3 cm thick screed layer. The earth mat is connected to the pipeline through a VLD. **GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF** **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 Revision: 1 Page: **87 of 96** Table C.4: Location and lengths of zinc ribbon | Start chainage
[m] | End chainage
[m] | Site description | Electrode description | |-----------------------|---------------------|----------------------------------|-----------------------| | 4 230 | 4 690 | near DSR01 | 1 x 400 m ribbon | | 7 850 | 8 250 | between DSR02 & DSR03 | 1 x 400 m ribbon | | 8 820 | 9 220 | between DSR02 &DSR03 | 1 x 400 m ribbon | | 9 970 | 11 570 | near DSR03 | 4 x 400 m ribbon | | 13 920 | 14 720 | near DSR04 | 2 x 400 m ribbon | | 16 840 | 18 440 | near DSR05 | 4 x 400 m ribbon | | 19 940 | 20 340 | at Dwars river bridge | 1 x 400 m ribbon | | 21 400 | 21 800 | at old farm ruins | 1 x 400 m ribbon | | 23 120 | 23 520 | at Xtrada mine entrance | 1 x 400 m ribbon | | 24 380 | 24 780 | at Senakgangwedi substation | 1 x 400 m ribbon | | 25 480 | 25 680 | at 275 kV crossing near Spitskop | 1 x 200 m ribbon | | 27 640 | 29 640 | near DSR07 | 5 x 400 m ribbon | | 30 990 | 32 990 | near DSR08 | 5 x 400 m ribbon | | 36 500 | 40 100 | end of pipeline | 9 x 400 m ribbon | | | | Ribbon total length: | 14 600 m | Table C.5: Location and type of valve station gradient control measures | Start chainage (m) | End
chainage (m) | Section description | Measures required | |--------------------|---------------------|---------------------|--| | 0 | 40 300 | entire pipeline | earth chamber re-bar plus external mat
OR | | | | · | earth chamber re-bar plus external asphalt layer | #### C.22 Measures at pump stations and dam outlet works To prevent hazardous voltage differences, a meshed earthing topology has to be applied inside the pump station buildings at Steelpoort and Spitskop and at the De Hoop dam outlet works, in accordance with SANS 61000-5-2. The buildings require a ring earth or bonding bar, 25 mm x 3 mm copper (or equivalent), to which all metal structures (pipes, steel floor reinforcement, structural steel, stairs, walkways, handrails etc.) are bonded. The pump casing itself is also bonded to this bonding bar. The incoming and outgoing pipelines having a CP potential must remain d.c. insulated from the earth mesh. To permit a.c. current and surges to flow, d.c. decoupling devices are connected between the insulated pipeline and the earthing system (e.g. across the insulating flanges). #### C.23 Mitigation of d.c. leakage effects at power line towers The earth wires of all metallic power line towers within 800 m of the pipelines or in the vicinity of anode ground beds GB1, GB2 and GB3, have to be isolated (see Table C.6). ## GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF **PIPELINES AND POWER LINES** Unique Identifier: 240-66418968 88 of 96 Revision: 1 Page: The gap size of the spark gaps across the insulators should be set to 8 mm, and in accordance with the issued line hardware specifications. Warning plaques have to be installed on the insulated towers, clearly indicating that the earth wire must be treated as "live" and temporary earthing is required during maintenance. Table C.6: Towers requiring insulators on the earth wires | Power line | km | Tower no.
(approx) | |--------------------------------|------------------------------|-----------------------| | Tubatse - Merensky 400 kV | 29.0 - 43.5
59.63 - 64.55 | 73 – 109
149 - 161 | | Arnot -Merensky 400 kV | 136.5 – 144.0 | 390 - 412 | | Merensky-Senakgangwedi 275 kV | 8.0 – 15.0 | 23 - 43 | | Senakgangwedi – Simplon 275 kV | 0 – 1.8 | 1 - 6 | | Merensky-Uchoba 132 kV | 1.8 – 6.0 | 7 - 24 | | Merensky – Tubatse 132 kV | 1.8 – 4.0 | 7 - 16 | | Jane Furse – Uchoba 132 kV | 25.0 – 27.0 | 100 - 108 | **Note:** The tower numbers shown are based on equal span lengths - the actual tower numbers to be confirmed, using the kms indicated. Eskom's existing lines can often not be de-energised for a sufficient period to permit fitting of earth wire insulators. In this case, the affected towers may be protected with zinc or magnesium sacrificial anodes. The design of sacrificial anodes is dependant on the local soil properties and the actual d.c. potential shift at each tower, and should be undertaken by a cathodic protection specialist, once the CP system is activated and the resulting d.c. potential shift has been measured. **GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF PIPELINES AND POWER LINES** Unique Identifier: **240-66418968** Revision: 1 Page: **89 of 96** #### **Annex D - Flowchart** #### **ESKOM COPYRIGHT PROTECTED** **GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF PIPELINES AND POWER LINES** Unique Identifier: **240-66418968** Revision: 1 Page: **90 of 96** #### **ESKOM COPYRIGHT PROTECTED** #### GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF PIPELINES AND POWER LINES Unique Identifier: **240-66418968** Revision: 1 Page: 91 of 96 #### **ESKOM COPYRIGHT PROTECTED** #### **GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF PIPELINES AND POWER LINES** Unique Identifier: **240-66418968** Revision: 1 Page: **92 of 96** #### **ESKOM COPYRIGHT PROTECTED** GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF PIPELINES AND POWER LINES Unique Identifier: 240-66418968 Revision: Page: 93 of 96 ## Annex E – Inspection sheet for a.c. mitigation components and servitude works | Inspection sheet No: | | Date of issue: | | | | |--|--|--------------------------------------|------|------------------------|--| | Pipeline name and location: | | | | | | | Pipeline owner and address: | | | | | | | Contractor responsible for a.c. mitigation design: | | | | | | | Contractor responsible for a.c. mitigation i | installa | tion: | | | | | INSTALLATION | | | | | | | New installation on new pipeline | | New installation on existing pipelin | ne 🗌 | Alteration / extension | | | Type of exposure: | | General Public | | Authorised personnel | | | Type of cathodic protection: | | Impressed current | | Sacrificial anodes | | | Type of pipeline product: | of pipeline product: Hazardous substance Non-hazardous substance | | | | | | Name and voltage rating of power line(s) or cable(s) influencing this pipeline: | | | | | | | Owner and address of the power line(s): . | | | | | | | Section of pipeline inspected: KP KP KP | | | | | | | Description of installation covered by this inspection (add additional pages or drawings as applicable): | GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF PIPELINES AND POWER LINES Unique Identifier: 240-66418968 Revision: Page: 94 of 96 ## Inspection sheet (continued) | NUMBER OF ITEMS COVERED BY THIS INSPECTION | | | | | |---|-----------------------|----------------------------|--|--| | Item | Existing installation | New / altered installation | | | | CP rectifier | | | | | | Vertical earth rod electrode | | | | | | Zinc ribbon electrode | | | | | | Gradient control mat | | | | | | d.c. decoupler | | | | | | Magnesium or zinc anode | | | | | | Surge protection or voltage
limiting device | | | | | | Bonding link | | | | | | Drainage unit | | | | | | Earth cover around installations | | | | | | Rehabilitation of servitude | | | | | | Pipeline markers | | | | | | Power line tower earth wire isolation | | | | | | Power line tower sacrificial anode | | | | | | d.c. shift at tower footing | | | | | | Impressed current ground bed (location check) | | | | | | Maintenance schedule | | | | | GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF PIPELINES AND POWER LINES Unique Identifier: **240-66418968** Revision: Page: 95 of 96 ## Inspection sheet (continued) | INSPECTION AND TESTS | | | | | |--|-------------------------|----------------------------|-----------------------|----------------------------| | Inspection | Existing installation | New / altered installation | | | | 1 Accessible components correctly selected | | | | | | 2 All protective devices of the correct rating | | | | | | 3 Components have been correctly installed | | | | | | 4 The enclosures used are of the correct IP rating | | | | | | 5 Bonding links and cables of the correct thickness and leng | gth | | | | | 6 Components that may become "live" protected from direct | t contact (dead front | construction) | | | | 7 Components correctly labelled | | | | | | 8 SANS 1014-1 Certificate of Compliance issued for the CF | rectifier installations | S | | | | Tests | Units | Instrument | Reading /result | | | | | | Existing installation | New / altered installation | | 1 Continuity of cables and bonding | Ohm | | | | | 2 Resistance of earth electrode (a.c. measurement) | Ohm | | | | | 3 Impedance of d.c. decoupler (below 15 V r.m.s. applied) | Ohm | | | | | 4 Pipeline voltage to remote earth | V r.m.s. | | | | | 5 d.c. potential shift at tower footing due to CP system | mV | | | | GUIDELINE ON THE ELECTRICAL CO-ORDINATION OF PIPELINES AND POWER LINES Unique Identifier: 2 240-66418968 Revision: 1 Page: 96 of 96 | Inspection sneet (continued) | | |--|---| | INSPECTION AND TESTS | | | | | | Comments: | | | | | | | | | | | | RESPONSIBILITY | | | I/We, being the person(s) responsible for the INSPECTION AND TESTING of the a.c. n the installation conforms to the design requirements approved by the relevant Electrical signatory is limited to the installation described in this form. | nitigation measures, particulars of which are given in this form, confirm that Supply Authority and the Pipeline Operator. The extent of the liability of the | | Name (in block letters): | | | Capacity: | Signature: | | Address: | Date: | | | | | | | Proposed Emergency Ecological Assessment at Woodmead Water Pipe Upgrade, City of Johannesburg, Gauteng Province. Prepared For: NTC Environmental (Pty) Ltd Attention: Ms. Ethel Chifunda AMP Building 17 Eaton Avenue Bryanston 2192 Tel: 011 462 2022 Fax: 086 665 1864 Email: ethel@ntcgroup.co.za Cell Number: 066 239 6094 Prepared By: Avhafarei Phamphe Mboneni Ecological Services 5 5th Street Linden Johannesburg Cell Number: 082 783 6724 Email: Mboneni.Phamphe@gmail.com # November 2022 ## **Executive Summary** #### Introduction and Background Johannesburg Water (JW) proposes to upgrade the water pipeline in Woodmead Park, Johannesburg. The proposed pipeline is approximately 6,3Km. Mboneni Ecological Services (Pty) Ltd was appointed by NTC Environmental (Pty) Ltd to undertake a Terrestrial Biodiversity Assessment as part of the Environmental Impact Assessment (EIA) process in order to assess the impacts that the proposed development will have on the receiving environment. The objective of this study was to identify sensitive species and their habitats on the study area. The current ecological status and conservation priority of vegetation on the site were assessed. Potential faunal habitats were investigated in the study area and all mammals, birds and reptiles known to occur or seen along the pipeline route. ## **Study Area** The proposed water pipeline upgrade route is situated on the Farms Haakdoornkraal 2 JR, Waterval 5 IR, Elkin 3 IR, Woodlands 7 IR, Bergvalei 37 IR and Zandfontein 42 IR, City of Johannesburg, City of Johannesburg, Gauteng Province. #### **Regional Vegetation** The proposed pipeline route falls within the <u>Grassland Biome</u> and this Biome has a high biodiversity, ranked only below the Fynbos biome in terms of biodiversity in South Africa. This Biome is found mainly on the high central plateau of South Africa, and the inland areas of KwaZulu-Natal Province and the Eastern Cape Province. Grasslands are dominated by a single layer of grasses. Trees are absent, except in a few localised habitats and geophytes are often abundant. The proposed pipeline route is classified as falling within the Egoli Granite Grassland vegetation type and no remnants of this vegetation type exists on site. #### **Terrestrial Threatened Ecosystems** "Ecosystem protection level" is an indicator of how adequately an ecosystem is protected or not. Ecosystems can be classified as *not protected*, *poorly protected*, *moderately protected* or *well protected* depending on the proportion of each ecosystem that is under conservation management within a protected area, as recognized in the National Environmental Management: Protected Areas Act (Act 57 of 2003) –these protected areas include state or privately-owned protected areas as well a land under biodiversity stewardship agreements. According to Government Gazette SANBI Threatened Ecosystems, the project site falls within the Egoli Granite Grassland terrestrial threatened ecosystem. This ecosystem/vegetation type is listed as **Poorly Protected (PP)** on a national scale. An ecosystem is considered "not protected" if under 5% of its biodiversity target is met within protected areas, "poorly protected" if 5% to 49% of its target is met in protected areas, and "moderately protected" if 50% to 99% of its target is met. If more than 100% of the target is met in protected areas, it is considered "well protected". #### **Gauteng Conservation Plan** Gauteng Conservation Plan 3.3 includes the following units that will be used as input into the National Bioregional Plan for the country: - <u>Critical Biodiversity Areas (CBA):</u> containing *Irreplaceable, Important* and *Protected Areas* all merged together into one layer. - <u>Ecological Support Areas (ESA):</u> containing all layers that are part of the entire hierarchy of biodiversity, but it is not possible to include all biodiversity features. The proposed pipeline route does not fall within any of the Gauteng CBAs and ESA regions. #### **Gauteng Ridges** Ridges are specialized by high spatial heterogeneity due to the range of differing aspects (north, south, east, west and variations thereof), slopes and altitudes resulting in differing soil characteristics (e.g., depth, moisture, temperature, drainage, nutrient content), light and hydrological conditions. Moist cool aspects are more conducive to the leaching of nutrients than warmer drier slopes. Variations in aspect, soil drainage and elevation/altitude have been found to be especially important predictors of biodiversity. The project route does not fall within any of the Gauteng ridge classes, with Classes 3 and 4 ridges situated North and West. #### Methodology Survey methodology included a comprehensive desktop review, utilising available provincial and national ecological data, relevant literature, GIS databases, topographical maps and aerial photography. This was then supplemented through a ground-truthing phase, where pertinent areas associated with the project area were visited during field survey undertaken on 25 November 2022. The survey focused on flora (vegetation) and fauna (mammals, avifauna, reptiles and amphibians). Several Red Listed Data floral and faunal species pertaining to the project area were identified during the desktop review and their habitat suitability was assessed through the ground-truthing phase of the survey. #### Results and Discussion – Flora and Fauna The proposed pipe upgrade route is situated along the servitudes/ road reserve, and traverses main roads such as Marlboro and M1. It is situated in an urban environment and most of the plants were cultivated as part of street trees project, landscaping and gardening. During the field survey, no threatened plant species or protected trees were observed along the proposed route. However, the following plant species are listed as "Protected Plants" in terms of Schedule 11 (Section 86 (1) (a)) of Transvaal Nature Conservation Ordinance No. 12 of 1983, namely all species of agapanthus *Agapanthus africanus*. A plant species such as *Hypoxis hemerocallidea*, is listed as Orange Listed Plant species. Orange lists are those within the Red list that are categorised as rare, Data deficient, declining or near threatened. *Hypoxis hemerocallidea* occurs in an open grassland and woodland and is widespread in South Africa in the eastern summer rainfall provinces (Eastern Cape, Free State, KwaZulu-Natal, Mpumalanga, Gauteng and Limpopo). It also occurs in Botswana, Lesotho and Swaziland and it's a highly sought-after medicinal plant. This species used to be classified as *Declining*, but now de-classified as *Least concern*. Species classified as Least concern are considered at low risk of extinction and are widespread and abundant, however, Gauteng Department of Agriculture and Rural Development (GDARD) has indicated that this species must remain classified as Orange list plant species due to its provincial level pressures. Therefore, in order to mitigate the
impacts to these plant species, all provincially protected plant species and Orange listed plants found along the route, should be protected and avoided. These plants should be planted just outside of the development route after the completion of construction activities. Where this proves not to be possible, a permit will be required from GDARD to transplant these plant species outside of the proposed pipeline route or donated to Conservation areas. The permit application should be preceded by a Search, Rescue and Relocation Plan. This Plan must be compiled by a competent Ecologist/Botanist. This Plan should also take into account medicinal plant species such as *Albuca virens* recorded along the route site. Fauna species recorded along the proposed route were common and are typical of grassland vegetation. No fauna Species of Conservation Concern were recorded along the study route. The fragmented and transformed area has lost the ecological ability to sustain any faunal assemblage or community. The human presence and associated disturbances taking place usually have a detrimental impact on fauna species (especially mammals and snakes) in the area. ### **Terrestrial Sensitivity** The entire proposed water pipeline upgrade route is assigned a **Low** sensitivity because they have low ecological value and provide limited to none of the ecosystem services. The species diversity along the route are low and all species present have a much wider distribution beyond this habitat or locality. #### **Conclusion and Recommendations** Generally, the development activities proposed within the route will not have a significant impact on biodiversity conservation within the region. It is the opinion of the ecologist, that the proposed water pipeline upgrade project be considered favourably, provided that the mitigation measures are implemented and adhered to. The methodologies used and results found during the field survey, together with the impacts and mitigation measures provide confidence that the project can go ahead. # **Table of Contents** | 1 | Introduction And Background | 1 | |--------|---|----| | 2 | STUDY AREA | 1 | | 3 | RELEVANT LEGISLATION AND GUIDELINES | 4 | | 4 | LIMITATIONS, GAPS AND ASSUMPTIONS | 4 | | 5 | Methodology | 5 | | 5.1 | Flora | 5 | | 5.2 | Mammals | 7 | | 5.3 | Avifauna | 7 | | 5.4 | Reptiles | 8 | | 6 | GAUTENG CONSERVATION PLAN | 8 | | 7 | GAUTENG RIDGES | 10 | | 8 | REGIONAL VEGETATION | 13 | | 8.1 | Egoli Granite Grassland | 16 | | 9 | THREATENED TERRESTRIAL ECOSYSTEMS | 17 | | 10 | RESULTS AND DISCUSSION | 20 | | 10.1 | Flora | 20 | | 10.1.1 | Desktop study results | 20 | | 10.1.2 | Plant species recorded on the project route | 21 | | 10.1.3 | Threatened Species, Species of Conservation Concern and provincially protected plants | 22 | | 10.1.4 | Alien invasive plant species recorded on the study area | 27 | | 10.1.5 | Trees which will be directly affected by the construction activities | 29 | | 10.1.6 | Potential occurrence of Red Data plant species | 34 | | 10.2 | Fauna | 36 | | 10.2.1 | Mammals | 36 | | 10.2.2 | Avifauna | 39 | | 10.2.3 | Reptiles | 45 | | 11 | TERRESTRIAL ECOLOGICAL SENSITIVITY ANALYSIS OF THE STUDY | | | | AREA | 47 | | 12 | ENVIRONMENTAL IMPACT ASSESSMENT | 48 | |----------|--|----| | 12.1.1 | Methodology | 48 | | 12.1.2 | Assessment of Environmental Impacts and Suggested Mitigation Measures | 49 | | 13 | CONCLUSION AND RECOMMENDATIONS | 68 | | 14 | References | 69 | | List c | f Figures | | | Figure | Google Earth image of the proposed pipeline route | 2 | | Figure 2 | 2. Locality Map of the project site | 3 | | Figure 3 | 3. Gauteng C-Plan in relation to the project route | 9 | | - | 4: The proposed pipeline upgrade route does not fall within any of the Gautenç | | | | 5. Biome on the project route | | | • | 6. Vegetation type within the proposed pipeline route | | | | 7. Threatened ecosystem within the project area (SANBI, 2011) | | | _ | 3. Threatened ecosystem Protection Level on the study area (NBA, 2018) | | | - | 9. South African Red Data list categories | | | • | 10. Agapanthus africanus on site | | | • | 11. Hypoxis hemerocallidea on site | | | • | 12. Albuca virens on site | | | • | 13. Medicinal and provincially protected plant species on site | | | - | 14. Senna didymobotrya recorded along the project route | | | _ | 15. Eupatorium macrocephalum (=Campuloclinium macrocephalum) recorde | | | _ | project route | _ | | | | | | - | 17. Lantana camara recorded along the project route | | | Figure | 18. Bauhinia galpinni recorded along the project route | 30 | | Figure | 19. Celtis africana recorded along the project route | 30 | | Figure 2 | 20. Combretum erythrophyllum recorded along the project route | 31 | | Figure 2 | 21. Erythrina lysistemon recorded along the project route | 31 | | Figure 2 | 22. Olea europaea subsp. africana recorded along the project route | 32 | | Figure 2 | 23. Searsia lancea recorded along the project route | 32 | | Figure 2 | 24. Searsia chirindensis recorded along the project route | 33 | | Figure 2 | 25. Vachellia karroo recorded along the project route | 33 | | Figure 2 | 26. Vachellia xanthophloea recorded along the project route | 34 | | Figure 2 | 27. Magaliesberg IBA in relation to the project area | 39 | | Figure 2 | 28. Common (Indian) Myna on site | 41 | | Figure 2 | 29. Pied crow on site | 42 | # List of Tables | Table 1. Four classes of ridges in Gauteng Province, percentage of transformation and land | |---| | use guidelines10 | | Table 2. Red Data Plant species recorded in grid 2628AA which could potentially occur in the | | project site (SANBI data)20 | | Table 3. Definitions of Red Data status (Raimondo et al. 1999) | | Table 4. Plant species recorded along the proposed pipeline route | | Table 5. Indigenous tree species which will be directly affected by the construction activities | | 29 | | Table 6. Probability of occurrence of Red Data Plant species which could potentially occur on | | the project area34 | | Table 7. Red Data Mammal species potentially occurring on the project area | | Table 8. Probability of occurrence of Red Data mammal species which could potentially occur | | on the project site | | Table 9. Red listed bird species which could potentially occur on the project area39 | | Table 10. Bird species recorded along the proposed pipeline route41 | | Table 11. Probability of Occurrence of Red listed bird species which could potentially occur | | along the proposed pipeline route43 | | Table 12. Red data reptile species which could potentially occur on the study area45 | | Table 13. Probability of occurrence of Red Data reptile species which could potentially occur | | on the project area46 | | Table 14: Potential impacts and recommended mitigation measures with significance rating | | before and after mitigation for the proposed Emergency Ecological Assessment at | | Woodmead Water Pipe Upgrade53 | # List of Abbreviations ADU Animal Demography Unit AIPs Alien Invasive Plant species BODATSA Botanical Database of Southern Africa CBAs Critical Biodiversity Areas CARA Conservation of Agricultural Resources Act CoJ City of Johannesburg DFFE Department of Forestry, Fisheries and the Environment EIA Environmental Impact Assessment EMPr Environmental Management Programme ESAs Ecological Support Areas GPS Global Positioning System GIS Geographic information system QDS Quarter degree Squares GDARD Gauteng Department of Agriculture and Rural Development JW Johannesburg Water IBA Important Bird and Biodiversity Area IUCN International Union for Conservation of Nature NBA National Biodiversity Assessment NEMA National Environmental Management Act PRECIS Pretoria Computer Information Systems SAAB South African Association of Botanists SAIEES South African Institute of Ecologists and Environmental Scientists SABAP South African Bird Atlas Project SACNASP South African Council for Natural Scientific Professions SANBI South African National Biodiversity Institute SARCA Southern African Reptile Conservation Assessment SCC Species of Conservation Concern TOPS Threatened or Protected Species #### Declaration of Independence #### I, Avhafarei Phamphe, declare that I - - act as the independent specialist; - do not have and will not have any financial interest in the undertaking of the activity, other than remuneration for work performed in terms of the Environmental Impact Assessment Regulations 2014; - will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant; - there are no circumstances that may compromise my objectivity in performing such work; - have expertise in conducting the specialist report relevant to this application, including knowledge of the National Environmental Management Act, 1998 (Act No. 107 of 1998), regulations and any guidelines that have relevance to the proposed activity; - will comply with the Act, regulations and all other applicable legislation; - · have no, and will not engage in, conflicting interests in the undertaking of the activity; - undertake that the report adheres to Appendix 6 of GN No. R 982 of 4 December 2014 (as amended), and - will provide the Competent Authority with access to all information at my disposal regarding the application, whether such information is favourable to the applicant or not. #### Avhafarei Phamphe: - Holds a M. Sc in Botany from the University of the Pretoria; - Is registered with South African Council for Natural Scientific Professions (SACNASP) as a Professional Natural Scientist (Pr.Sci.Nat) Ecological Science, (Registration No.: 400349/12), with expertise in floral and faunal ecology; - Has been
actively involved in the environmental consultancy field for over 18 years; - Is a Professional Member of South African Institute of Ecologists and Environmental Scientists (SAEES) and - Is a member of the South African Association of Botanists (SAAB). | vhafarei Phamphe | |---------------------------------------| | lame of Specialist | | Iboneni Ecological Services (Pty) Ltd | | lame of Company | | 9 November 2022 | | Pate | | | | | | ignature | #### 1 Introduction And Background Johannesburg Water (JW) proposes to upgrade the water pipeline in Woodmead Park, Johannesburg. The proposed pipeline is approximately 6,3Km. Mboneni Ecological Services (Pty) Ltd was appointed by NTC Environmental (Pty) Ltd to undertake a Terrestrial Biodiversity Assessment as part of the Environmental Impact Assessment (EIA) process in order to assess the impacts that the proposed development will have on the receiving environment. The objective of this study was to identify sensitive species and their habitats on the study area. The current ecological status and conservation priority of vegetation on the site were assessed. Potential faunal habitats were investigated in the study area and all mammals, birds and reptiles known to occur or seen along the pipeline route. # 2 STUDY AREA The proposed water pipeline upgrade route is situated on the Farms Haakdoornkraal 2 JR, Waterval 5 IR, Elkin 3 IR, Woodlands 7 IR, Bergvalei 37 IR and Zandfontein 42 IR, City of Johannesburg, Gauteng Province (**Figures 1** and **2**). Figure 1. Google Earth image of the proposed pipeline route Figure 2. Locality Map of the project site ## 3 RELEVANT LEGISLATION AND GUIDELINES The following legislations are relevant to this project: - Transvaal Nature Conservation Ordinance, 1983 (Act No. 12 of 1983); - The Constitution, 1996 (Act No. 108 of 1996) Section 24; - Conservation of Agricultural Resources Act, 1983 (Act No. 43 of 1983); - The white paper on the Conservation and Sustainable Use of South Africa's Biological Diversity (1997); - National Forests Act, 1998 (Act No. 84 of 1998); - National Environmental Management Act, 1998 (Act No. 107 of 1998); - National Environmental Management Biodiversity Act, 2004 (Act No. 10 of 2004); - National Environmental Management: Biodiversity Act, 2004 (Act No. 10 of 2004) Threatened or Protected Species regulations; - Guidelines for Involving Specialists in the EIA Processes Series (2005); - Gauteng Ridge Guidelines (2006); - The National Environmental Management Act (NEMA) No. 107 of 1998): Environmental Impact Assessment Regulations, 2014 as amended. Specifically, the requirements of the specialist report as per the requirements of Appendix 6; - Gauteng Conservation Plan Version 3.3 (2011); - Draft Bioregional Plan for the City of Johannesburg (2011); - National Environmental Management: Biodiversity Act, 2004 (Act No. 10 of 2004) -Alien and Invasive Species (AIS) Regulations which became law on 1 October 2014; - Gauteng Department of Agriculture and Rural Development (GDARD) Requirements for Biodiversity Assessments Version 3 (2014) and - National Biodiversity Assessment (2018). # 4 LIMITATIONS, GAPS AND ASSUMPTIONS The following constraints/limitations were applicable to this assessment: • The field survey was conducted in November 2022, which covers optimal time of the year to find animals and plant species of high conservation priority. It is unlikely that any more visits would reveal information that would change the outcome of this assessment both in terms of ecosystems of special conservation concern or suitable habitats of species of particular conservation concern. A site visit which was conducted therefore appear to be sufficient to address the objectives of this study. - The survey areas were concentrated along the proposed development route. - Weather condition during the survey was favourable for recording both fauna and flora. - The focus of the survey remains a habitat survey that concentrates on the possibility that species of particular conservation priority occur on the site or not. - While assessment of the potential occurrence of SCC has been undertaken, and is informed by readily available information, this provides only a surrogate indicator of the likelihood of such species occurring. This is however regarded as appropriate given the level of habitat degradation/transformation across much of the project area. - Data collection in this study relied heavily on data from representative, homogenous sections of vegetation units, as well as general observations, analysis of satellite imagery from the past until the present, generic data and a desktop analysis. - The potential of future similar developments in the same geographical area, which could lead to cumulative impacts cannot be meaningfully anticipated. - The impact descriptions and assessment are based on the author's understanding of the proposed development based on the site visit and information provided. Since ecological impact studies deal with dynamic natural systems additional information may come to light at a later stage and this Specialist can thus not accept responsibility for conclusions and mitigation measures made in good faithbased information gathered or databases consulted at the time of the investigation. # 5 METHODOLOGY #### 5.1 Flora The flora assessment consisted of two complementary approaches: - A desktop analysis, which included literature review, previous biodiversity reports, local knowledge, topographical maps, and Google Earth imagery; and - Site visit was conducted on 25 November 2022. Satellite imagery of the area was obtained from Google Earth and was studied in order to acquire a three-dimensional impression of the topography and land-use and also to identify potential "hot-spots" or specialized habitats such as ridges, rivers and natural vegetation on or near the project area. The computerized data storage and retrieval system, called the Botanical Database of Southern Africa (BODATSA) was consulted to retrieve a list of Red Data plants recorded from the 2628AA Quarter Degree Square (QDS) http://posa.sanbi.org/searchspp.php). This list was used to determine which Red Data plant species could potentially occur on the project route. Version 2022 of the Red List of South African plants (http://redlist.sanbi.org/index.php), which is managed as part of SANBI's Threatened Species Programme, was consulted for the current conservation status of each species in the above list. The term "Species of Conservation Concern" (SCC) as defined by Raimondo et al. (2009) was followed in this report, namely all species classified as threatened (Critically Endangered, Endangered and Vulnerable), as well as species classified as Near Threatened, Critically Rare and Rare. The vegetation map published by Mucina and Rutherford (2018) was consulted to identify vegetation types that are found along the project route. The description of the vegetation types follows Mucina and Rutherford (2006). The project route was traversed on foot and species listed as they were encountered. Attention was paid to the occurrence of medicinal, Red data plant species, protected trees, provincially protected plants, alien invasive and declared weed species. Field guides such as van Wyk *et al.* (1997), Pooley (1998), van Oudshoorn (1999) and Manning (2009) were consulted during the field visit to aid in the identification of plant species. Regulations published for the National Forests Act (Act 84 of 1998) as amended, provide a list of protected tree species for South Africa. The species on this list were assessed in order to determine which protected tree species have a geographical distribution that coincides with the study area and habitat requirements that may be met by available habitat in the study area. The distributions of species on this list were obtained from published sources (e.g., van Wyk & van Wyk 1997) and from the South African National Biodiversity Institute (SANBI) Biodiversity Information System website (http://sibis.sanbi.org/) for the quarter degree grid in which species have been previously recorded. Alien Invasive plant species are controlled by the National Environmental Management: Biodiversity Act, 2004 (Act No. 10 of 2004) - Alien and Invasive Species (AIS) List, 2016 (and the latest revised edition of 2019-02-13) was consulted. The AIS Regulations list different categories of invasive species that must be managed, controlled or eradicated from areas where they may cause harm to the environment, or that are prohibited to be brought into South Africa. Alien Invasive plant species are divided into four categories, namely: Category 1a: Invasive species which must be combatted and eradicated. Any form of trade or planting is strictly prohibited. - Category 1b: Invasive species which must be controlled and wherever possible, removed and destroyed. Any form or trade or planting is strictly prohibited. - Category 2: Invasive species, or species deemed to be potentially invasive, in which a permit is required to carry out a restricted activity. Category 2 species include commercially important species such as pine, wattle and gum trees. - Category 3: Invasive species which may remain in prescribed areas or provinces. Further planting, propagation or trade, is however prohibited. #### 5.2 <u>Mammals</u> The Animal Demographic Unit (ADU) website, previous biodiversity reports, South African National Biodiversity Institute (SANBI) and Skinner & Chaminda (2005) were consulted in order to draw up a list of mammal species potentially occurring along the proposed pipeline route. During the site visit, mammals were identified by spoor, burrows and visual sightings through random transect walks and documented. The habitat quality and quantity for Red Listed species potentially present were evaluated. The adjoining properties (approximately 50m) were also scanned for the presence of Red
Listed mammal species/habitat. The confirmed list of presences was augmented with anecdotal information provided by the local community residing in the vicinity of the proposed pipeline route. #### 5.3 Avifauna The online databases of the Southern African Bird Atlas Project (SABAP 2), previous biodiversity reports and *Mybirdpatch* were consulted as a means to determine which Red Listed bird species were previously recorded from the area. During the site visit, this list was audited based on confirmed sightings of Red Listed bird species and the evaluation of suitable habitat for Red Listed bird species potentially present. The study route, including the adjoining properties within 50 m, were surveyed on foot during random transect walks and all sightings were documented. Birds were identified through visual identification by using a 10 x 50 Voyager binocular, by call, and from feathers. Where necessary, identifications were verified using field guides such as Sasol birds of Southern Africa (Sinclair *et al.* 2002) and the Chamberlain Guide to Birding Gauteng (Marais & Peacock, 2008). ## 5.4 Reptiles The ADU website, previous biodiversity reports, SANBI and historic distributions (Alexander & Marais, 2007) of reptile species were consulted in order to draw up list of potential occurrences. During site visit, reptiles were identified by visual sightings during random transect walks. Possible reptile retreats such as burrows were inspected for any inhabitants. The habitat quality and quantity for Red Listed species potentially present were evaluated. The adjoining properties (approximately 50 m) were also scanned for sensitive reptile species and habitats. The list of confirmed presences was augmented with anecdotal information provided by the local community residing in the vicinity of the proposed pipeline route. ## 6 GAUTENG CONSERVATION PLAN Gauteng Nature Conservation, a unit within GDARD, produced the Gauteng C-Plan Version 3 (C-Plan 3) in December 2010. C-Plan is critical in ensuring adequate protection of biodiversity and the environment in Gauteng Province (Gauteng Conservation Plan Version 3.3, 2011). Gauteng C-Plan 3.3 includes the following that will be used as input into the National Bioregional Plan for the country: - <u>Critical Biodiversity Areas (CBA):</u> containing *Irreplaceable, Important* and *Protected Areas* all merged together into one layer. - <u>Ecological Support Areas (ESA):</u> containing all layers that are part of the entire hierarchy of biodiversity, but it is not possible to include all biodiversity features. CBAs include natural or near-natural terrestrial and aquatic features that were selected based on an areas biodiversity characteristics, spatial configuration and requirement for meeting both biodiversity pattern and ecological process targets. ESAs are areas that are not essential for meeting biodiversity representation targets/thresholds, but nonetheless play an important role in supporting the ecological functioning of critical biodiversity areas and/or in delivering ecosystem services that support socio-economic development, such as water provision, flood mitigation or carbon sequestration. The proposed pipeline route does not fall within of the Gauteng CBAs and ESA regions (**Figure 3**). Figure 3. Gauteng C-Plan in relation to the project route # 7 GAUTENG RIDGES Ridges are specialized by high spatial heterogeneity due to the range of differing aspects (north, south, east, west and variations thereof), slopes and altitudes resulting in differing soil characteristics (e.g., depth, moisture, temperature, drainage, nutrient content), light and hydrological conditions (Samways and Hatton, 2000). Moist cool aspects are more conducive to the leaching of nutrients than warmer drier slopes (Lowrey and Wright, 1987). Variations in aspect, soil drainage (Burnett *et al.* 1998) and elevation/altitude (Primack, 1995) have been found to be especially important predictors of biodiversity. According to Tshwane Open Space Framework (2005), Seventy-four (74%) percent of the twenty-two (22) globally threatened plant species occur on the ridges and hills of Gauteng, while at least three (3) threatened mammal species, several bird species of conservation concern, three (3) rare reptile species and a Red Data Butterfly inhabit ridges. All ridges in Gauteng have been classified into four classes (**Table 1**) based on the percentage of the ridge that has been transformed (mainly through urbanization or other human activities) using the 1994 CSIR/ARC Landcover data. The project route does not fall within any of the Gauteng ridge classes, with Classes 3 and 4 ridges (Gauteng C-Plan 3.3) situated North and West, as indicated in **Figure 4**. Table 1. Four classes of ridges in Gauteng Province, percentage of transformation and land use guidelines | Ridge type | % of | Gauteng | Policy | |--|------|---------|---| | Class 1 (0-5% transformed) includes Suikerbosrand & parts of Magaliesberg | 58% | | Only low impact activities with an ecological footprint of 5% or less in the 200-metre buffer zone of the ridge will be supported, no development will be permitted on the ridge itself. | | Class 2 (5-35% transformed) includes parts of Magaliesberg, Cradle of Humankind World Heritage site, Klipriviersberg, Bronberg, Skurweberg | 23% | | Development activities and uses that have a high environmental impact on a Class 2 ridge will not be permitted. Low impact development activities, such as tourism facilities, which comprise of an ecological footprint of 5% or less of the property may be supported. (The ecological footprint includes all areas directly impacted on by a development activity, including all paved surfaces, landscaping, property access and service provision). Low impact development activities on a ridge will be supported where is it feasible to undertake the development on a portion of the property abutting the ridge. | | Ridge type | % of | Gauteng | Policy | |--|--------|---------|--| | | ridges | | | | Class 3 (35-65% transformed)
Includes Northcliff, Roodepoort
and Krugersdorp ridge | 8% | | The guidelines for Class 2 ridges will be applied to areas of the ridge that have not been significantly impacted on by human activity. The guidelines for Class 3 will be applied to areas of the ridge that have been significantly impacted on by human activity | | Class 4 (65-100% transformed) includes Melville Koppies & Linksfield ridge | 11% | | Further development activities will not be supported in areas of the ridge where the remaining contiguous extent habitat is 4ha or more. | Figure 4: The proposed pipeline upgrade route does not fall within any of the Gauteng ridges ## 8 REGIONAL VEGETATION The proposed pipeline route falls within the <u>Grassland biome</u> (**Figure 5**) and this Biome has a high biodiversity, ranked only below the Fynbos biome in terms of biodiversity in South Africa (Driver *et al.* 2004). This Biome is found mainly on the high central plateau of South Africa, and the inland areas of KwaZulu-Natal Province and the Eastern Cape Province. Grasslands are dominated by a single layer of grasses. Trees are absent, except in a few localised habitats and geophytes are often abundant (Low and Rebelo, 1996 Mucina and Rutherford (2018) classified the proposed pipeline route as falling within the Egoli Granite Grassland vegetation type, as indicated in **Figure 6**. No remnants of this vegetation type exists on site. Figure 5. Biome on the project route Figure 6. Vegetation type within the proposed pipeline route The description of the vegetation type follows below: #### 8.1 Egoli Granite Grassland Egoli Granite Grassland vegetation type is found in Gauteng Province. It occurs in Johannesburg Dome extending in the region between northern Johannesburg in the south, and from near Lanseria Airport and Centurion (south of Pretoria) to the north, westwards to about Muldersdrif and eastwards to Tembisa (Mucina and Rutherford, 2006). The following species are important in the Egoli Granite Grassland vegetation type: Graminoids: Aristida canescens, A. congesta, Cynodon dactylon, Digitaria monodactyla, Eragrostis capensis, E. chloromelas, E. curvula, E. racemosa, Heteropogon contortus, Hyparrhenia hirta, Melinis repens subsp. repens, Monocymbium ceresiiforme, Setaria sphacelata, Themeda triandra, Tristachya leucothrix, Andropogon eucomus, Aristida aequiglumis, A. diffusa, A. scabrivalvis subsp. borumensis, Bewsia biflora, Brachiaria serrata, Bulbostylis burchellii, Cymbopogon caesius, Digitaria tricholaenoides, Diheteropogon amplectens, Eragrostis gummiflua, E. sclerantha, Panicum natalense, Schizachyrium sanguineum. Setaria nigrirostris. Tristachya rehmannii, Urelytrum agropyroides. Herbs: Acalypha angustata, A. peduncularis, Becium obovatum, Berkheya insignis, Crabbea hirsuta, Cyanotis speciosa, Dicoma anomala,
Helichrysum rugulosum, Justicia anagalloides, Kohautia amatymbica, Nidorella hottentotica, Pentanisia prunelloides subsp. Pseudognaphalium luteo-album and Senecio venosus. Geophytic Herbs: Cheilanthes deltoidea, C. hirta. Low Shrubs: Anthospermum hispidulum, A. rigidum subsp. pumilum, Gnidia capitata, Helichrysum kraussii, Ziziphus zeyheriana. Tall Shrub: Searsia pyroides. Succulent Shrub: Lopholaena coriifolia (Mucina & Rutherford, 2006). The conservation status of this vegetation type is classified as **Endangered**, with a national conservation target of 24%. Only about 3% of this unit is conserved in statutory reserves (Diepsloot and Melville Koppies Nature Reserves) and a number of private conservation areas including Motsetse and Isaac Stegmann Nature Reserves, Kingskloof Natural Heritage Site, Melrose and Beaulieu Bird Sanctuaries as well as the Walter Sisulu National Botanical Garden. More than two thirds of the unit has already undergone transformation mostly by urbanisation, cultivation or by building of roads. Current rates of transformation threaten most of the remaining unconserved areas. There is no serious alien infestation in this unit, although species such as *Eucalyptus grandis*, *E. camaldulensis* and *E. sideroxylon* are commonly found (Mucina and Rutherford, 2006). ## 9 THREATENED TERRESTRIAL ECOSYSTEMS In terms of section 52(1) (a), of the National Environmental Management: Biodiversity Act, 2004 (Act No. 10 of 2004), a national list of ecosystems that are threatened and in need of protection was gazetted on 9 December 2011 (Government Notice 1002 (Driver *et al.* 2004). The list classified all threatened or protected ecosystems in South Africa in terms of four categories; Critically Endangered (CR), Endangered (EN), Vulnerable (VU), or Protected. The purpose of categorising these ecosystems is to prioritise conservation areas in order to reduce the rates of ecosystem and species extinction, as well as preventing further degradation and loss of structure, function, and composition of these ecosystems. It is estimated that threatened ecosystems make up 9.5% of South Africa, with critically endangered and endangered ecosystems accounting for 2.7%, and vulnerable ecosystems 6.8% of the land area. It is therefore vital that Threatened Terrestrial Ecosystems inform proactive and reactive conservation and planning tools, such as Biodiversity Sector Plans, municipal Strategic Environmental Assessments (SEAs) and Environmental Management Frameworks (EMFs), Environmental Impact Assessments (EIAs) and other environmental applications (Mucina *et al.* 2006). 'Ecosystem protection level' is an indicator of how adequately an ecosystem is protected or not. Ecosystems can be classified as not protected, poorly protected, moderately protected or well protected depending on the proportion of each ecosystem that is under conservation management within a protected area, as recognized in the National Environmental Management: Protected Areas Act (Act 57 of 2003) –these protected areas include state or privately-owned protected areas as well a land under biodiversity stewardship agreements. According to Government Gazette SANBI Threatened Ecosystems (2011), the project route falls within the Egoli Granite Grassland terrestrial threatened ecosystem (**Figure 7**). However, according to the Skowno *et al.* (2019), this ecosystem/vegetation type is listed as **Poorly Protected (PP)** on a national scale (**Figure 8**). According to the Driver *et al.*, (2012), an ecosystem is considered "not protected" if under 5% of its biodiversity target is met within protected areas, "poorly protected" if 5% to 49% of its target is met in protected areas, and "moderately protected" if 50% to 99% of its target is met. If more than 100% of the target is met in protected areas, it is considered "well protected". Figure 7. Threatened ecosystem within the project area (SANBI, 2011) Figure 8. Threatened ecosystem Protection Level on the study area (NBA, 2018) ## 10 RESULTS AND DISCUSSION ## 10.1 Flora #### 10.1.1 Desktop study results According to the data sourced from BODATSA (SANBI) (2628AA QDS) and previous biodiversity studies, Red Data plant species which are known to occur on or near the project site are indicated in **Table 2** below. The definitions of the conservation status are provided in **Table 3**. Table 2. Red Data Plant species recorded in grid 2628AA which could potentially occur in the project site (SANBI data). | Family | Taxon | Conservation status | Endemism | |--------------|---|---|-----------------------------| | Aizoaceae | Khadia beswickii (L.Bolus) N.E.Br. | Vulnerable | South African endemic | | Crassulaceae | Adromischus umbraticola C.A.Sm. subsp. umbraticola | Near Threatened | South African endemic | | Asteraceae | Cineraria austrotransvaalensis Cron | Near Threatened | South African endemic | | Apocynaceae | Stenostelma umbelluliferum (Schltr.)
Bester & Nicholas | Near Threatened | South African endemic | | Proteaceae | Leucospermum saxosum S.Moore | Endangered | Not endemic to South Africa | | Fabaceae | Indigofera hybrida N.E.Br. | Vulnerable | South African endemic | | Fabaceae | Pearsonia bracteata (Benth.) Polhill | Near Threatened | South African endemic | | Lamiaceae | Salvia schlechteri Briq. | Data Deficient -
Insufficient
Information | South African endemic | | Proteaceae | Protea compacta R.Br. | Near Threatened | South African endemic | | Fabaceae | Argyrolobium longifolium (Meisn.)
Walp. | Vulnerable | South African endemic | Table 3. Definitions of Red Data status (Raimondo et al. 1999) | Symbol | Status | Description | |--------|------------|--| | EN | Endangered | A species is Endangered when the best available evidence indicates that it meets at least one of the five International Union | | | | for Conservation of Nature (IUCN) criteria for Endangered, indicating that the species is facing a very high risk of extinction | | VU | Vulnerable | A species is Vulnerable when the best available evidence indicates that it meets at least one of the five IUCN criteria for | | Symbol | Status | Description | |--------|---|---| | | | Vulnerable, indicating that the species is facing a high risk of extinction. | | NT | Near Threatened | A species is Near Threatened when available evidence indicates that it is close to meeting any of the five IUCN criteria for Vulnerable, and is therefore likely to qualify for a threatened category in the near future. | | DDD | Data Deficient -
Insufficient
Information | A species is DDD when there is inadequate information to make
an assessment of its risk of extinction, but the species is well
defined. Listing of species in this category indicates that more
information is required and that future research could show that
a threatened classification is appropriate. | #### 10.1.2 Plant species recorded on the project route The proposed pipe upgrade route is situated along the servitudes/ road reserve, and traverses main roads such as Marlboro and M1. It is situated in an urban environment and most of the plants were cultivated as part of street trees project, landscaping and gardening. A list of plant species recorded along the project route are listed in **Table 3** below. Table 4. Plant species recorded along the proposed pipeline route | Scientific name | Common name | Ecological status | Growth Form | |--------------------------|--------------------|----------------------|--------------------| | Acacia mearnsii | Black wattle | Category 2 AIS | Tree | | Aloe arborescens | Candelabra aloe | Indigenous/Medicinal | Succulent Herb | | Agapanthus africanus | African lily | Least | Herb | | | | concern/Medicinal | | | Agave sisalana | Sisal | Exotic | Succulent | | Bauhinia galpinni | Pride of De Kapp | Least | Shrub | | | | concern/Medicinal | | | Celtis africana | White stinkwood | Least concern | Tree | | Combretum erythrophyllum | River bushwillow | Indigenous | Tree | | Conyza bonariensis | Flax-leaf fleabane | Weed | Herb | | Cynodon dactylon | Couch Grass | Indigenous/ Least | Grass | | | | concern | | | Cycas revoluta | Sago palm | Least concern | Shrub | | Eupatorium macrocephalum | Pompom weed | Category 1b AIS | Herb | | (=Campuloclinium | | | | | macrocephalum) | | | | | Eriobotrya japonica | Loquat | Exotic | Tree | | Erythrina lysistemon | Common Coral Tree | Indigenous/ Least | Grass | | | | concern | | | Hypochaeris radicata | Hairy Wild Lettuce | Weed | Herb | | Hypoestes aristata | Ribbon Bush | Least | Herb | | | | concern/Medicinal | | | Iris germanica | German iris | Exotic | Herb | | Jacaranda mimosifolia | Jacaranda | Not listed for urban | Tree | | | | areas in Gauteng | | | Lantana camara | Common Lantana | Category1b AIS | Shrub | | Scientific name | Common name | Ecological status | Growth Form | | |-------------------------------|-----------------------|--------------------|--------------------|--| | Ligustrum lucidum | Chinese wax – | Category3 AIS | Tree | | | | leaved privet | | | | | Melia azedarach | Persian Lilac/Syringa | Category 3 AIS in | Tree | | | | | urban areas | | | | Morus alba | White mulberry | Category 3 AIS | Tree | | | Olea europaea subsp. africana | Wild olive | Indigenous | Shrub | | | Pelargonium inquinans | Scarlet Geranium | Least | Herb | | | | |
concerm/Medicinal | | | | Pinus patula | Patula pine | Category 2 AIS | Tree | | | Plantago major | Broadleaved Ribwort | Weed | Herb | | | Plectranthus fruticosus | Forest spurflower | Least | Shrub | | | | • | concerm/Indigenous | | | | Populus deltoides | | | | | | Prunus persica | Peach tree | Exotic | Tree | | | Quercus alba | White oak | Exotic | Tree | | | Senna didymobotrya | African Senna | Category 1b AIS | Shrub | | | Schinus molle | Peruvian peppertree | Exotic | Tree | | | Searsia lancea | Karee | Indigenous | Tree | | | Searsia chirindensis | Red currant | Least concern | Tree | | | Solanum mauritianum | Bugweed | Category 1b AIS | Shrub | | | Sonchus asper | Spiny sowthistle | Weed | Shrub | | | Strelitzia reginae | Orange strelitzia | Least concern | Herb | | | Tagetes minuta | Tall Khaki Weed | Weed | Herb | | | Tecomaria capensis | Cape honeysuckle | Least | Tree | | | · | | concern/indigenous | | | | Tipuana tipu | Tipa tree | Category 3 AIS | Tree | | | Vachellia karroo | Sweet thorn | Least | Tree | | | | | concern/indigenous | | | | Vachellia sieberiana | Paperbark thorn | Least | Tree | | | | - | concern/indigenous | | | | Vachellia xanthophloea | Fever tree | Least | Tree | | | | | concerm/Medicinal | | | Note: AIS=Alien Invasive Species # 10.1.3 Threatened Species, Species of Conservation Concern and provincially protected plants According to the South African Red data list categories done by SANBI (**Figure 9**), **threatened species** are species that are facing a high risk of extinction. Any species classified in the IUCN categories Critically Endangered, Endangered or Vulnerable is a threatened species whereas **Species of conservation concern** are species that have a high conservation importance in terms of preserving South Africa's high floristic diversity and include not only threatened species, but also those classified in the categories Extinct in the Wild (EW), Regionally Extinct (RE), Near Threatened (NT), Critically Rare, Rare, Declining and Data Deficient - Insufficient Information (DDD). Figure 9. South African Red Data list categories During the field survey, no threatened plant species or protected trees were observed along the proposed route. However, the following plant species are listed as "Protected Plants" in terms of Schedule 11 (Section 86 (1) (a)) of Transvaal Nature Conservation Ordinance No. 12 of 1983, namely all species of agapanthus *africanus* (**Figure 10**). However, these plant species were planted as part of landscaping to create an ecological aesthetic. According to the information obtained from GDARD, Figure 10. Agapanthus africanus on site A plant species such as *Hypoxis hemerocallidea* (**Figure 11**), is listed as Orange Listed Plant species. Orange lists are those within the Red list that are categorised as rare, Data deficient, declining or near threatened. *Hypoxis hemerocallidea* occurs in an open grassland and woodland and is widespread in South Africa in the eastern summer rainfall provinces (Eastern Cape, Free State, KwaZulu-Natal, Mpumalanga, Gauteng and Limpopo). It also occurs in Botswana, Lesotho and Swaziland (Wyk. *et al.* 1997) and it's a highly sought-after medicinal plant. This species used to be classified as *Declining* (Raimondo *et al* 2009), but now declassified as *Least concern*. Species classified as Least concern are considered at low risk of extinction and are widespread and abundant, however, GDARD has indicated that this species must remain classified as Orange list plant species due to its provincial level pressures. Therefore, in order to mitigate the impacts to these plant species, all provincially protected plant species and Orange listed plants found along the route, should be protected and avoided. These plants should be planted just outside of the development route after the completion of construction activities. Where this proves not to be possible, a permit will be required from GDARD to transplant these plant species outside of the proposed pipeline route or donated to Conservation areas. The permit application should be preceded by a Search, Rescue and Relocation Plan. This Plan must be compiled by a competent Ecologist/Botanist. This Plan should also take into account medicinal plant species such as *Albuca virens* (**Figure 12**) recorded along the route site. The distribution of all these medicinal and provincially protected plant species on site are shown in **Figure 13** below. Figure 11. Hypoxis hemerocallidea on site Figure 12. Albuca virens on site Figure 13. Medicinal and provincially protected plant species on site #### 10.1.4 Alien invasive plant species recorded on the study area Alien invader plant species (AIS) are species of exotic origin that typically invade undeveloped or disturbed areas (Bromilow, 2018). AIS pose a threat to ecosystems because by nature they grow fast, reproduce quickly and have high dispersal abilities allowing them to replace indigenous species (Henderson, 2001). Alien invasive plant species on the study area (**Table 4**) were observed to occur in clumps, scattered distributions or as single individuals. Invader and weed species on site must be controlled to prevent further infestation and it is recommended that all individuals of invader and weeds species (especially Category 1b) must be removed and eradicated. Alien plant species such as Senna didymobotrya (Figure 14), Solanum mauritianum (Figure 15), Eupatorium macrocephalum (=Campuloclinium macrocephalum) (Figure 16) and Lantana camara (Figure 17) (Category 1b) were recorded along the proposed pipeline route. Figure 14. Senna didymobotrya recorded along the project route Figure 15. Eupatorium macrocephalum (=Campuloclinium macrocephalum) recorded along the project route Figure 16. Solanum mauritianum recorded along the project route Figure 17. Lantana camara recorded along the project route #### 10.1.5 Trees which will be directly affected by the construction activities **Table 5** below indicates indigenous tree species, which are mostly above 2m, which will be directly affected by the construction activities. These trees are too big to be transplanted and therefore, tree species of same species should be transplanted along the route after the completion of the project. The pictures are shown in **Figures 18-26.** Table 5. Indigenous tree species which will be directly affected by the construction activities | Plant Species | Common Name | Number of Trees | |-------------------------------|-------------------|-----------------| | Bauhinia galpinni | Pride of De Kapp | 1 | | Celtis africana | White stinkwood | 8 | | Combretum erythrophyllum | River bushwillow | 11 | | Erythrina lysistemon | Common Coral Tree | 6 | | Olea europaea subsp. africana | Wild olive | 12 | | Searsia lancea | Karee tree | 26 | | Searsia chirindensis | Red currant | 2 | | Vachellia karroo | Sweet thorn | 12 | | Vachellia xanthophloea | Fever tree | 6 | Figure 18. Bauhinia galpinni recorded along the project route Figure 19. Celtis africana recorded along the project route Figure 20. Combretum erythrophyllum recorded along the project route Figure 21. Erythrina lysistemon recorded along the project route Figure 22. Olea europaea subsp. africana recorded along the project route Figure 23. Searsia lancea recorded along the project route Figure 24. Searsia chirindensis recorded along the project route Figure 25. Vachellia karroo recorded along the project route Figure 26. Vachellia xanthophloea recorded along the project route #### 10.1.6 Potential occurrence of Red Data plant species Data sourced from SANBI website (BODATSA) indicates that there are plant species on the Red Data List that are known to occur in or on areas surrounding the project area. The Probability of Occurrence is based on suitable habitat and known distribution ranges. The plant species and their probability of occurrence are indicated in **Table 6** below. Only plant species which have higher probability to occur on the project site are shown in the table below. Table 6. Probability of occurrence of Red Data Plant species which could potentially occur on the project area. | Taxon | Conservation status | Suitable habitat | Probability of Occurrence | |--|---------------------|---|---------------------------| | Khadia beswickii
(L.Bolus) N.E.Br. | Vulnerable | Open shallow soil over rocks in grassland. | Low | | Adromischus
umbraticola C.A.Sm.
subsp. umbraticola | Near
Threatened | South-facing rock crevices on ridges, restricted to Gold Reef Mountain Bushveld in the northern parts of its range, and Andesite Mountain Bushveld in the south | Low | | Cineraria
austrotransvaalensis
Cron | Near
Threatened | Amongst rocks on steep hills and ridges, at the edge of thick bush or under trees on a | Low | | Taxon | Conservation status | Suitable habitat | Probability of Occurrence | |---|---|---|---------------------------| | | | range of rock types: quartzite, dolomite and shale, 1400-1700 m. | | | Stenostelma
umbelluliferum
(Schltr.) Bester &
Nicholas | Near
Threatened | Deep black turf in open woodland mainly in the vicinity of drainage lines. | Low | | Leucospermum
saxosum S.Moore | Endangered | This species is common on quartzite outcrops. It is a long-lived species, and survives fires by resprouting from underground boles or
rootstocks. Seeds are released after ripening, and dispersed by ants to their underground nests, where they are protected from predation and fire. It is pollinated by birds. | Low | | Indigofera hybrida
N.E.Br. | Vulnerable | Dry highveld grassland. | Low | | Pearsonia bracteata
(Benth.) Polhill | Near
Threatened | Plateau grassland. | Low | | Salvia schlechteri
Briq. | Data Deficient - Insufficient Information | Coastal grasslands. | Low | | Protea compacta
R.Br. | Near
Threatened | Lowland sandstone fynbos and sandy coastal flats, 0-200 m. Mature individuals are killed by fires, and only seeds survive. Wind-dispersed seeds are stored in fire-resistant inflorescences, and released after fires. It is pollinated by birds. | Low | | Argyrolobium
longifolium (Meisn.)
Walp. | Vulnerable | Ngongoni and sandstone grassland. | Low | # 10.2 <u>Fauna</u> #### **10.2.1 Mammals** #### 10.2.1.1 Desktop survey results The potential mammal species that could be found on the study area are those which have been recorded in grid cell 2628AA (FitzPatrick Institute of African Ornithology, 2022), previous biodiversity reports & SANBI data and also from distributions based on records documented in Skinner and Chimimba (2005), Monadjem *et al.*, (2010) and Stuart & Stuart (2013) (**Table 7**). Conservation status assessments for each species were obtained from Child *et al.* (2016). | Family | Genus | Species | Common Name | Red list category | |------------------|----------------|--------------|-----------------------|-------------------| | Erinaceidae | Atelerix | frontalis | Southern African | Near Threatened | | | | | Hedgehog | | | Felidae | Acinonyx | jubatus | Cheetah | Vulnerable | | Hyaenidae | Hyaena | brunnea | Brown Hyena | Near Threatened | | Hyaenidae | Crocuta | crocuta | Spotted Hyaena | Near Threatened | | Muridae | Otomys | auratus | Southern African Vlei | Near Threatened | | | | | Rat | | | Mustelidae | Aonyx | capensis | African Clawless | Near Threatened | | | | - | Otter | | | Nesomyidae | Mystromys | albicaudatus | African White-tailed | Vulnerable | | - | | | Rat | | | Soricidae | Crocidura | mariquensis | Swamp Musk Shrew | Near Threatened | | Vespertilionidae | Pipistrellus | rusticus | Rusty Pipistrelle | Near Threatened | | • | (Pipistrellus) | | | | Table 7. Red Data Mammal species potentially occurring on the project area #### 10.2.1.2 Mammals recorded on the study area As previously mentioned, the proposed route falls within habitats which are highly fragmented and disturbed. The project route in its present state is not considered optimal habitat for mammal species due to anthropogenic activities such as human habitation. However, the riparian vegetation provides suitable habitats for water-dependant mammal species. Mammal species such as House rat *Rattus rattus* and Four-striped Grass Mouse (*Rhabdomys pumilio*) were recorded on site. #### 10.2.1.3 Potential occurrence of Red Data mammal species The potential Red data mammal species that could be found along the proposed pipeline route are those which have been recorded in grid cell 2628AA (FitzPatrick Institute of African Ornithology, 2022), SANBI data and also from distributions based on records documented in Skinner and Chimimba (2005), Monadjem *et al.*, (2010) and Stuart & Stuart (2013). The probability of occurrence (**Table 8**) was based on the consideration of the following factors: - Known distribution; - Overall abundance of a species; - Availability of suitable habitat on the study area; - Availability of prey items on the study area and surrounding areas; - · Level of anthropogenic disturbance; and - Species tolerance to anthropogenic disturbance. The Likelihood of occurrence was generally assessed as follows: - **Confirmed**: either through current survey or through sightings, and local knowledge where provided. - High: Distribution of the species occurs over the sites and the sites and immediate surrounds provide habitat, roosting and food requirements of the specific species. There is nothing to prevent the species from residing on site for a length of time (season or year). - Medium: Distribution of the species occurs over the sites but the specific habitat, roosting and/or food requirements are absent or sparse on site, but are present in the greater area. Species are not likely to reside on site, but may forage over or traverse the site. Species population is at low density or erratic over site, but habitat and / or foraging areas are present on site and in the immediate surrounds. - **Low**: Distribution is on the edge of site and habitat, roosting and/or food requirements are absent or sparse in the sites and surrounds. Species population is at low density or erratic over site and habitat and foraging areas are sparse or absent. Table 8. Probability of occurrence of Red Data mammal species which could potentially occur on the project site. | Common Name | Red list category | Suitable Habitat | Probability Of Occurrence | |------------------------------|---|---|---------------------------| | Southern African
Hedgehog | Near Threatened | The distribution mainly falls within savannah and grassland vegetation types, within which it is found in a wide variety of semi-arid and sub-temperate habitats, including scrub brush, western Karoo, grassland and suburban gardens. | Low | | Cheetah | Vulnerable | Cheetahs are habitat generalists and as such can survive where sufficient food is available and threats are tolerable. | Very Low | | Brown Hyena | Near Threatened | It inhabits desert areas, semi-desert, and open woodland savannahs. It can survive close to urban areas by scavenging. | Very Low | | Spotted Hyaena | Near Threatened | Although the Spotted Hyaena is predominantly a savannah species, it has been found to occur in most habitat types including semi-desert, open woodland and dense dry woodlands. In many parts of its range, it occurs in close association with human habitation | Very Low | | Southern African Vlei Rat | Near Threatened | This species is associated with mesic grasslands and wetlands within alpine, montane and sub-montane regions, typically occurring in dense vegetation in close proximity to water | | | African Clawless Otter | Per Near Threatened Cape Clawless Otters are predominantly aquatic and seldom found far from permanent water. Fresh water is an essential habitat requirement, not only for drinking but also for rinsing their fur | | Medium | | African White-tailed Rat | Vulnerable | They are often associated with calcrete soils within grasslands. They are never found on soft, sandy substrate, rocks, wetlands or river banks. | Low | | Swamp Musk Shrew | Near Threatened | This species has highly specific habitat requirements, occurring only close to open water with intact riverine and semi-aquatic vegetation such as reedbeds, wetlands and the thick grass along river banks. They are found both in the wet substrates and drier grassland away from the water's edge. They are often sampled in waterlogged areas, such as inundated grasslands and vleis. | Low | | Rusty Pipistrelle | Near Threatened | It occurs in savannah woodland and is associated with open water bodies, but is absent from moist miombo woodland and arid savannah | Low | #### 10.2.2 Avifauna #### 10.2.2.1 Desktop survey results The Important Bird and Biodiversity Areas (IBA) Programme identifies and works to conserve a network of sites critical for the long-term survival of bird species that are globally threatened, have a restricted range and are restricted to specific biomes/vegetation types (Barnes, 2000). As shown in **Figure 27** below, the project area does not fall within any of the IBAs. The nearest IBA is Magaliesberg IBA, situated North-West of the project area. Figure 27. Magaliesberg IBA in relation to the project area The online database of the Southern African Bird Atlas Project (SABAP2), and SANBI were queried for a list of bird species confirmed to occur in the relevant pentad (mapping unit) that the project area is located in, namely 2628AA. Taylor *et al.* (2015) was consulted for the most current conservation status of each species of conservation concern on the list (**Table 9**). Table 9. Red listed bird species which could potentially occur on the project area | Common Name | Species | Red List Category | |-----------------------|-------------------------|-------------------| | African Grass-Owl | Tyto capensis | Vulnerable | | African Marsh-Harrier | Circus ranivorus | Endangered | | Blue Crane | Anthropoides paradiseus | Near Threatened | | Common Name | Species | Red List Category | |--------------------------|-------------------------------|-------------------| | Cape Vulture | Gyps coprotheres | Endangered | | Half-collared Kingfisher | Alcedo semitorquata | Near Threatened | | Martial Eagle | Polemaetus bellicosus | Endangered | | Secretarybird | Sagittarius serpentarius | Vulnerable | | Greater Flamingo | Phoenicopterus roseus | Near Threatened | | Lesser Flamingo | Phoenicopterus minor | Near Threatened | | Maccoa Duck | Oxyura maccoa | Near Threatened | | Lanner Falcon | Falco biarmicus | Vulnerable | | Black Stork | Ciconia nigra | Vulnerable | | Yellow-billed Stork | Mycteria ibis | Endangered | | Saddle-billed Stork | Ephippiorhynchus senegalensis | Endangered | | Verreaux's Eagle | Aquila verreauxii |
Vulnerable | | Greater Painted-snipe | Rostratula benghalensis | Near Threatened | | Red-footed Falcon | Falco vespertinus | Near Threatened | | European Roller | Coracias garrulus | Near Threatened | | White-bellied Korhaan | Eupodotis senegalensis | Vulnerable | | Black-winged Pratincole | Glareola nordmanni | Near Threatened | | Abdim's Stork | Ciconia abdimii | Near Threatened | | Marabou Stork | Leptoptilos crumeniferus | Near Threatened | #### 10.2.2.2 Field work results and discussion Within the vegetation types found in the study area and immediate surrounding areas, two major bird micro-habitat systems were identified, namely exotic trees and Disturbed & transformed area. **Exotic trees** often provide roosting and nesting habitat for various bird species, and as such their importance for avifauna should not be underestimated. Exotic trees provide perching, roosting and nesting habitat for various raptor species, as well as larger birds such as francolins, Guineafowl, Herons and Hadeda ibises. Although stands of *Eucalyptus* are invader species, these stands have become important refuges for certain species of raptors including Eagles and Buzzards. Birds such as Lesser Kestrel and Falcons make use of large *Eucalyptus* trees, where they roost in large numbers. No nests were identified on the study area. **Disturbed and transformed area:** Suburban gardens and parks have created an evergreen habitat for many avifaunal species, where birds can hide, breed and forage for food. Many avifaunal species have adapted to human-altered areas and these species are mainly the more common avifaunal species found within southern Africa. Large gardens, parks, sport fields and golf courses with open lawns also create ideal habitat for ground-feeding birds. These lawns are usually well watered and the ground soft, making it easy for birds that probe in the ground with their beaks in search of worms and other ground-living insects. There is Darkcap Bulbul Cape Wagtail Least concern Least concern usually water present, in the form of irrigation systems, ponds, man-made dams such as at golf courses, water features and/or swimming pools. Only the more common avifaunal species that are able to adapt to areas changed by man are likely to make use of this habitat system. Fourteen (14) bird species (**Table 10**) were recorded during the field survey. Species recorded were common and widespread and typical of grassland biome. No Red Data bird species associated with the study route were recorded. Bird species recorded along the route are shown in **Figures 28-29**. | Common name | Scientific name | Conservation status | |--------------------------------|---------------------------|---------------------| | Black-headed Heron | Ardea cinerea | Least concern | | Hadeda Ibis | Bostrychia hagedash | Least concern | | African Sacred ibis | Threskiornis aethiopicus | Least concern | | Blacksmith Lapwing (Plover) | Vanellus armatus | Least concern | | Rock Dove (Feral Pigeon) | Columba livia | Least concern | | Laughing Dove | Streptopelia senegalensis | Least concern | | Cape turtle (Ring-necked) dove | Streptopelia capicola | Least concern | | Pied Crow | Corvus albus | Least concern | | Common Fiscal (Fiscal Shrike) | Lanius collaris | Least concern | | Common (Indian) Myna | Acridotheres zeylonus | Introduced species | | House Sparrow | Passer domesticus | Least concern | | Southern-masked Weaver | Ploceus velannus | Least concern | Pycnonotus barbatus Motacilla capensis Table 10. Bird species recorded along the proposed pipeline route Figure 28. Common (Indian) Myna on site Figure 29. Pied crow on site # 10.2.2.3 Potential occurrence of Red Data bird species **Table 11** below indicates the preferred habitat, together with the probability of occurrence. The probability of occurrence is based on the availability of suitable habitat, known distribution, overall abundance, food availability, disturbance factors, anthropogenic change and the preferred habitats of the species. Only bird species which have higher probability of occurrence on the study area are discussed in the table below. Table 11. Probability of Occurrence of Red listed bird species which could potentially occur along the proposed pipeline route | Common Name | Species | Red List Category | Suitable Habitat | Probability of occurrence | |-----------------------------|--------------------------|-------------------|---|---------------------------| | African Grass-
Owl | Tyto capensis | Vulnerable | This species occurs predominately in rank grass, typically but not always at fairly high altitudes. It breeds mainly in permanent and seasonal vleis, which it vacates while hunting or during post-breeding. Prefers permanent or seasonal vleis and vacates the latter when these dried up or are burnt | Very Low | | African Marsh-
Harrier | Circus ranivorus | Endangered | It generally favours inland and coastal wetlands. | Very Low | | Blue Crane | Anthropoides paradiseus | Near Threatened | This crane breeds in dry grasslands at high elevations where there is less disturbance. They may roost and breed in wetlands if available and some individuals prefer to nest in arable and pastureland. | Very Low | | Cape Vulture | Gyps coprotheres | Endangered | It can occupy a variety of habitat types, although it especially favours subsistence farming communal grazing areas, where there is plenty of livestock to feed on. | Very Low | | Half-collared
Kingfisher | Alcedo semitorquata | Near Threatened | It generally prefers narrow rivers, streams and estuaries with
dense vegetation onshore, but it may also move into coastal
lagoons and lakes | Very Low | | Martial Eagle | Polemaetus bellicosus | Endangered | Occurs in a variety of habitats but seem to prefer arid and mesic savannah but is also commonly found at forest edges and in open shrubland | Very Low | | Secretarybird | Sagittarius serpentarius | Vulnerable | Prefers open grassland with scattered trees, shrubland, open Acacia and Combretum savannah. Restricted to large conservation areas in the region. Avoids densely wooded areas, rocky hills and mountainous areas | Very Low | | Greater Flamingo | Phoenicopterus roseus | Near Threatened | This species inhabits relatively shallow water bodies, including saline lagoons, salt pans, estuaries, and large saline or alkaline lakes. | Very Low | | Lesser Flamingo | Phoenicopterus minor | Near Threatened | It generally favours open, eutrophic and shallow wetlands, coastal mudflats, salt works and sewage treatment plants; it exclusively breeds on salt pans and saline lakes | Very Low | | Maccoa Duck | Oxyura maccoa | Near Threatened | Prefers permanent wetlands that have rich concentrations of bottom-dwelling (benthic) invertebrates. | Very Low | | Common Name | Species | Red List Category | Suitable Habitat | Probability of occurrence | |----------------------------|-------------------------------|-------------------|---|---------------------------| | Lanner Falcon | Falco biarmicus | Vulnerable | Inhabits a wide variety of habitats, from lowland deserts to forested mountains. | Very Low | | Black Stork | Ciconia nigra | Vulnerable | It can occupy almost any type of wetland, such as pans, rivers, flood plains, ponds, lagoons, dams, swamp forests, mangrove swamps, estuaries, tidal mudflats and patches of short grass close to water. | Very Low | | Yellow-billed
Stork | Mycteria ibis | Endangered | It generally prefers wetlands, such as pans, flood plains, marshes, streams, flooded grassland and small pools, occasionally moving into mudflats and estuaries. | Very Low | | Saddle-billed
Stork | Ephippiorhynchus senegalensis | Endangered | It generally prefers freshwater marshes, rivers through open savanna, lake shores, pans and flood plains. | Low | | Verreaux's Eagle | Aquila verreauxii | Vulnerable | It generally prefers mountains and other rocky habitats with cliffs. | Very Low | | Greater Painted-
snipe | Rostratula benghalensis | Near Threatened | It generally prefers dams, pans and marshy river flood plains, or any waterside habitat with mud and vegetation. | Low | | Red-footed
Falcon | Falco vespertinus | Near Threatened | It generally prefers open habitats with scattered trees, such as open grassy woodland, wetlands, forest fringes and croplands, although it often roosts in stands of alien trees (especially <i>Eucylaptus</i>) in the suburbs of small towns. | Low | | European Roller | Coracias garrulus | Near Threatened | It is locally common in northern and central Namibia, Botswana, Zimbabwe, Mozambique and north-eastern and central South Africa. It generally prefers savanna, such as broad-leaved and <i>Acacia</i> woodland. | Low | | White-bellied
Korhaan | Eupodotis senegalensis | Vulnerable | It generally prefers fairly tall, dense sour or mixed grassland, either open or lightly wooded, occasionally moving into cultivated or burnt land. | Low | | Black-winged
Pratincole | Glareola nordmanni | Near Threatened | It generally prefers open seasonally wet grassland, edges of pans and cultivated land. | Low | | Abdim's Stork | Ciconia abdimii | Near Threatened | It generally prefers savanna woodland, grassland, pastures, pan edges, cultivated land and suburban areas. | Low | | Marabou Stork | Leptoptilos crumeniferus | Near Threatened | It generally prefers open semi-arid habitats and wetlands, such as pans, dams and rivers. | Low |
10.2.3 Reptiles ### 10.2.3.1 Desktop survey results As previously stated, the proposed pipeline route falls within the grassland biome and this biome houses 22% of South Africa's endemic reptiles (O' Connor and Bredenkamp, 1997). According to the data sourced from the SANBI, South African Reptile Conservation Assessment (FitzPatrick Institute of African Ornithology, 2022) for the grid cell 2628AA and historic distribution (Alexander & Marais, 2007), two Red data reptile species are known to occur in the region (**Table 12**). Table 12. Red data reptile species which could potentially occur on the study area | Family | Genus | Species | Common name | Red list category | |---------------|--------------|----------|-------------------------|-------------------| | Cordylidae | Chamaesaura | aenea | Coppery Grass Lizard | Near Threatened | | Lamprophiidae | Homoroselaps | dorsalis | Striped Harlequin Snake | Near Threatened | #### 10.2.3.2 Reptiles recorded on and around the study area The trees and buildings provide suitable habitats for reptile species to occur along the project area. Only one reptile species was recorded during the survey, namely Speckled Rock Skink (*Trachylepis punctatissima*). No reptile Species of Conservation Concern were recorded on the project development site. According to the anecdotal information, Brown House Snake (*Boaedon capensis*) has been seen on site. This reptile species is known to frequent human dwellings where it feeds on rodents or lizards. It is widespread in South Africa and very common in suburban gardens (Branch, 2001). ## 10.2.3.3 Potential occurrence of Red Data reptile species Two reptile species of conservation concern are expected to be present on the project area, namely Striped harlequin snake (*Homoroselaps dorsalis*) and Coppery Grass Lizard (*Chamaesaura aenea*) (Branch, 1998 & Bates *et al.* 2014). **Table 13** below indicates the reptiles' preferred habitat together with their probability of occurrence on the project area. The probability of occurrence was based on the consideration of the following factors: - Known distribution; - Availability of suitable habitat on the study area; - Availability of prey items on the study area and surrounding areas; - · Level of anthropogenic disturbance; and - Species tolerance to anthropogenic disturbance. Table 13. Probability of occurrence of Red Data reptile species which could potentially occur on the project area. | Common name | Red list | Suitable habitat and ecology | Probability of | |-------------------|------------|--|----------------| | | category | | Occurrence | | Coppery Grass | Near | Restricted to the Grassland Biome. Found | Low | | Lizard | Threatened | on the grassy slopes and plateau of the | | | | | eastern escarpment and Highveld. | | | Striped Harlequin | Near | It is found in the Free State, Gauteng, | Low | | Snake | Threatened | Mpumalanga and Limpopo provinces and | | | | | is known to occasionally inhabit termite | | | | | mounds in grasslands | | # 11 TERRESTRIAL ECOLOGICAL SENSITIVITY ANALYSIS OF THE STUDY AREA The determination of specific ecosystem services and sensitivity of ecosystem components and processes, both abiotic and biotic, is rather complex and no single overarching criterion will apply to all habitats investigated. Sensitivity analysis does not only consider aspects that are found on the study area, but also consider the possibility of reinstatement or reestablishment of the original environment and its biota, or at least the rehabilitation of ecosystem services resembling the original state after an area was significantly degraded. The main aspects of an ecosystem that need to be incorporated in the ecological sensitivity analysis included the following: - Describing the nature and number of species present, taking into consideration their conservation value as well as the probability of such species to survive or re-establish itself following disturbances, and alterations to their specific habitats, of various magnitudes; - Identifying the species or habitat features that are 'key ecosystem providers' and characterising their functional relationships (Kremen, 2005); - Determining the aspects of community structure that influence function, especially aspects which influence the stability or rapid decline of communities (Kremen, 2005); - Assessing key environmental factors that influenced the provision of services (Kremen, 2005) - Gaining knowledge about the spatio-temporal scales over which these aspects operate (Kremen, 2005). Based on the information above, sensitivity classes have been summarised as follows (**Table 14**): Table 14. Sensitivity classes (Kremen, 2005) | CATEGORY | DESCRIPTION | |------------------|--| | High sensitivity | Areas that are relatively undisturbed or pristine, and; Very species-rich relative to immediate surroundings; Or have a very unique and restricted indigenous species composition; Otherwise, constitute specific habitats for fauna and flora of conservation concern, and where the total extent of such habitats and associated species of conservation concern remaining in southern Africa is limited; and | | | Excessive disturbance of such habitats may lead to species or
ecosystem loss. | | Medium | Areas where disturbances are at most limited and; | | sensitivity | Areas with a species diversity representative of its natural state, but not exceptionally high or unique compared to its surroundings; Areas of which the biotic or abiotic configuration does not constitute a very specific or restricted habitat or very high niche diversity; | | CATEGORY | DESCRIPTION | |-----------------|---| | | Areas which provide ecosystem services needed for the continued functioning of the ecosystem and the continued use thereof (e.g., grazing); While species of conservation concern may occur on the area, these are not restricted to these habitats only; Areas which need to remain intact to ensure the functioning of adjacent ecosystems, or wildlife corridors or portions of land that prevent the excessive fragmentation of natural flora and fauna populations, or areas that will be difficult to rehabilitate to a functional state after physical alteration; and With a high species diversity and potentially higher number of species of conservation concern. | | Low sensitivity | Areas which have been previously disturbed or; Areas that have a low ecological value. Areas which provide limited ecosystem services. Species diversity may be low or all species present have a much wider distribution beyond this habitat or locality; Plant SCC may be present on such areas, but these are not restricted to these habitats only and can be relocated with ease; Further inputs may include landscapes where the abiotic nature is such that it can be rehabilitated relatively easy to allow the reestablishment of the original species composition, and where the development will not lead to any unjustified degradation of landscapes or ecosystem services if adequately mitigated. | The entire proposed water pipeline upgrade route is assigned a **Low** sensitivity because they have low ecological value and provide limited to none of the ecosystem services. The species diversity along the route are low and all species present have a much wider distribution beyond this habitat or locality. # 12 ENVIRONMENTAL IMPACT ASSESSMENT # 12.1.1 Methodology The impacts and the proposed management thereof are first discussed on a qualitative level and thereafter quantitatively assessed by evaluating the duration, extent, magnitude, probability and ultimately the significance of the impacts (refer to methodology provided below). The assessment considers impacts before and after mitigation measures. The duration of the impact | The duration of the impac | ·L | | |---------------------------|----------------------|--------------| | Score | Duration | Description | | 1 | Short term | 0 – 1 years | | 2 | Short to medium term | 2 – 5 years | | 3 | Medium term | 5 – 15 years | | 4 | Medium to long term | 15+ years | | Score | Duration | Description | |-------|-----------|-------------| | 5 | Permanent | Permanent | The extent (spatial scale) of the impact | Score | Extent | Description | |-------|---------------|--| | 1 | Site specific | Within the site boundary | | 2 | Local | Affects immediate surrounding areas | | 3 | Regional | Extends substantially beyond the site boundary | | 4 | Provincial | Extends to almost entire province or larger
region | | 5 | National | Affects country or possibly world | The magnitude (severe or beneficial) of the impact | Score | Severe/beneficial effect | Description | |-------|--------------------------|---| | 0 | None | No effect – No disturbance/benefit | | 2 | Slight | 2 Little effect – negligible disturbance/benefit | | 4 | Slight to moderate | Effects observable – environmental impacts reversible with time | | 6 | Moderate | Effects observable – impacts reversible with rehabilitation | | 8 | Moderate to high | Extensive effects – irreversible alteration to the environment | | 10 | High | Extensive permanent effects with irreversible alteration | The probability of the impact | Score | Rating | Description | |-------|-----------------|--| | 1 | Very Improbable | Probably won't occur | | 2 | Improbable | Low likelihood of occurring | | 3 | Probable | Distinct possibility of occurring | | 4 | Highly Probable | Very likely to occur | | 5 | Definite | Will occur, regardless of any intervention | Significance of the impact, Degree of Irreversibility, Degree of loss of Resource are rated as follows: | Significance Rating | Description | |---------------------------|---| | Low (score of 1-29) | Impact will not significantly change fauna biodiversity and requires no | | | significant mitigation measures. | | Moderate (score of 30-60) | Impact will change fauna biodiversity and requires some mitigation | | | measures. | | High (Score of 61-100) | Impact will significantly change fauna biodiversity and significant | | | mitigation measures and management is required. Potential fatal flaw. | The Significance = (Magnitude + Spatial Scale + Duration) x Probability #### 12.1.2 Assessment of Environmental Impacts and Suggested Mitigation Measures Only the ecological issues identified during the appraisal of the receiving environment and potential impacts are assessed below (**Table 15**). Mitigation measures are provided to prevent (first priority), reduce or remediate adverse environmental impacts. The pre/construction phases of the proposed development is anticipated to have direct impacts on floral habitat. Site clearing will potentially result in permanent removal of floral habitat and therefore the disturbance of vegetation must be limited to areas of construction only. According to the information obtained from GDARD, all provincially protected plant species (especially *Agapanthus* sp),highly sought-after medicinal plant species (*Albuca virens*) and an Orange listed plant species (*Hypoxis hemerocallidea*) such as found along the route, should be preserved and avoided. Therefore, in order to mitigate the impacts to these plant species, all provincially protected plant species and Orange listed plants found along the route, should be protected and avoided. These plants should be planted just outside of the development route after the completion of construction activities. Where this proves not to be possible, a permit will be required from GDARD to transplant these plant species outside of the proposed pipeline route or donated to Conservation areas. The permit application should be preceded by a Search, Rescue and Relocation Plan. This Plan must be compiled by a competent Ecologist/Botanist. Based on the results of the field survey, it is evident that the project site provides low habitat to a number of fauna species. Although it is assumed that the majority of fauna species will move to different areas as a result of disturbance, many SCC fauna species have a specific habitat requirement and the destruction of their habitats will result in displacement to less optimal habitats, or ultimately may result in their demise. However, due to the study site providing low suitable habitats for SCC fauna to occur, this impact can be mitigated. The project will lead to the disturbance of flora habitat, which then creates opportunities for invasion by invasive and alien species. The potential disturbance of soil and vegetation during construction activities encourages the establishment of pioneer vegetation, in many cases creating an ideal opportunity and optimal conditions for weeds and alien invasive plants to invade both disturbed and undisturbed areas after construction has been completed. Alien Invasive plants can have far reaching detrimental effects on indigenous vegetation and has been widely accepted as being a leading cause of biodiversity loss. The large amount of disturbance created during construction will leave the study area and adjacent undeveloped areas vulnerable to alien plant invasion. Failure to manage rehabilitation and landscaping well can lead to serious alien invasive plant infestation. Increased levels of noise, disturbance and human activity during construction may be detrimental to fauna. The risk of illegal hunting/poaching/trapping of wildlife for various uses is likely. Many species would however become habituated to the existing activities and would return to normal activity after some time. The operational phase of the development will be permanent. Potential impacts on local faunal species as a result of disturbance/displacement has been assessed as not significant at a local scale. If disturbed areas are not rehabilitated/re-vegetated/landscaped post construction, soil erosion may continue throughout the operational phase of the development. This is likely to be exacerbated by stormwater runoff from any hardened/impermeable surfaces such as compacted soil, etc. Due to the extensive disturbance likely to be created by construction within the project area, this impact is most likely to occur within the project area, but could potentially occur outside the project area as well if suitable avoidance and mitigation measures were not implemented during construction. The potential impacts associated with the pre-construction, construction and operational activities are discussed in **Table 15** below. #### 12.1.2.1 Pre-construction / Construction Phases Activities associated with the pre-construction and construction phases, include the following: - Site establishment, such as construction camps, laydown and storage areas on site; - Earthmoving activities e.g. excavation and soil stockpiling; - · Vegetation clearance of the site; - · Storage of hazardous and non-hazardous material and wastes; and - Landscaping and rehabilitation of the site. Potential impacts to flora and fauna during the pre-/and construction phases, include the following: - · Destruction of indigenous flora during site establishment; - Potential loss of provincially protected plants species and medicinal plants; - Inadvertent killing and injury of fauna species during vegetation clearance and excavation; - · Potential loss of soil due to fuel and chemical spills (soil contamination); - Encroachment, proliferation and spread of weeds and alien invasive plant species; - Loss/displacement of fauna species potentially present on site; - Increased soil erosion due to compaction by vehicles and construction activities, and incorrect storm water management measures; - Soil contamination from hazardous substance spillages (Fuel) outside their primary and secondary containment during maintenance work and re-fuelling. - · Loss of topsoil and increased erosion; - Disturbance of local fauna populations due to construction activities; and - Loss of flora and fauna habitat due to vegetation clearance. #### 12.1.2.2 Operational Phase Activities associated with the operational phase, include the following: - Vegetation management activities; and - Fauna management activities. Potential impacts associated with the operational phase, include the following: - AIPs and weeds - Disturbance to ecological processes due to altered habitat and disturbance to natural movements/processes; - Disturbance of local faunal communities; and - · Loss of habitat due to operational activities. Table 14: Potential impacts and recommended mitigation measures with significance rating before and after mitigation for the proposed Emergency Ecological Assessment at Woodmead Water Pipe Upgrade | Potential impac | t BEFORE mi | itigation | | | | Mitigation | Potential impact AFTER mitigation | | | | | |---|--------------------------|-------------------|------------------------|------------------------|-------------------------|---|-----------------------------------|-------------------|----------------|------------|--------------------------| | Nature of the impact | Duration | Extent | Probability | Magnitude | Significance | - Measures | Duration | Extent | Probability | Magnitude | Significanc
e | | Destruction of ndigenous lora medicinal and Drange listed blants) during site establishment and potential oss of regetation | Short to medium term (2) | Site specific (1) | Highly
Probable (4) | Slight to moderate (4) | 28 Low)
Status (-ve) | The provincially protected plant species and medicinal plants found along the route, should be protected and avoided and where this proves not to be possible, a permit will be required from GDARD to transplant these species outside of the proposed development route. Development planning must ensure that loss of vegetation and disturbance are restricted within the recommende | Short to
medium
term (2) | Site specific (1) | Improbable (2) | Slight (2) | 10
(Low)
Status (-ve) | | Potential impac | t BEFORE mi | tigation | | | | Mitigation | Potential impact AFTER mitigation | | | | | | |----------------------|-------------|----------|-------------|-----------|--------------|------------------------------|-----------------------------------|--------|-------------|-----------|---------------|--| | Nature of the impact | Duration | Extent | Probability | Magnitude | Significance | Measures | Duration | Extent | Probability | Magnitude | Significanc e | | | | | | | | | d site layout | | | | | | | | | | | | | | footprint. | | | | | | | | | | | | | | Clearly | | | | | | | | | | | | | | demarcate | | | | | | | | | | | | | | the | | | | | | | | | | | | | | construction | | | | | | | | | | | | | | footprint prior | | | | | | | | | | | | | | to clearing of | | | | | | | | | | | | | | vegetation. | | | | | | | | | | | | | | Areas cleared | | | | | | | | | | | | | | of vegetation | | | | | | | | | | | | | | must be re- | | | | | | | | | | | | | | vegetated/lan | | | | | | | | | | | | | | dscaped prior | | | | | | | | | | | | | | to contractor | | | | | | | | | | | | | | leaving the | | | | | | | | | | | | | | site. | | | | | | | | | | | | | | • Pre- | | | | | | | | | | | | | | construction | | | | | | | | | | | | | | environmenta | | | | | | | | | | | | | | I induction | | | | | | | | | | | | | | must be | | | | | | | | | | | | | | conducted to | | | | | | | | | | | | | | all: | | | | | | | | | | | | | | construction | | | | | | | | | | | | | | staff on site to | | | | | | | | | | | | | | ensure that | | | | | | | | | | | | | | basic | | | | | | | | | | | | | | environmenta
I principles | | | | | | | | | | | | | | are adhered | | | | | | | | | | 1 | | 1 | | to. This | | | | 1 | | | | | | | | | | includes | | | | | | | | | | | | | | awareness as | | | | | | | | | | | | | | to | | | | | | | | | | | | | | conservation | | | | | | | | | | | | | | and | | | | | | | | Potential impact | BEFORE mi | itigation | | | | Mitigation | Potential impact AFTER mitigation | | | | | | |----------------------|-----------|-----------|-------------|-----------|--------------|--|-----------------------------------|--------|-------------|-----------|------------------|--| | Nature of the impact | Duration | Extent | Probability | Magnitude | Significance | Measures | Duration | Extent | Probability | Magnitude | Significanc
e | | | impast. | | | | | | importance of provincially protected plants, protected trees and medicinal plants. • Environment al Control Officer (ECO) should provide supervision and oversight of vegetation clearing activities. • All laydown, storage areas, site camps etc. should be restricted to within the project area and should preferably be situated within areas of low sensitivity (already disturbed | | | | | | | | Potential impac | otential impact BEFORE mitigation | | | | | Mitigation | Potential impact AFTER mitigation | | | | | |--|-----------------------------------|-------------------|------------------------|------------------------|-------------------------|---|-----------------------------------|-------------------|----------------|------------|--------------------------| | Nature of the impact | Duration | Extent | Probability | Magnitude | Significance | - Measures | Duration | Extent | Probability | Magnitude | Significanc
e | | Loss and displacement of animals on site due to habitat loss and mortality | Short to medium term (2) | Site specific (1) | Highly
Probable (4) | Slight to moderate (4) | 28 Low)
Status (-ve) | Building material or ablution facilities should not be stored or kept in areas containing natural vegetation. Surrounding areas with indigenous vegetation should under no circumstance s be fragmented or disturbed further or used as an area for dumping of waste. Training of construction personnel to recognise threatened animal species will reduce the probability of | Permanen t (5) | Site specific (1) | Improbable (2) | Slight (2) | 16 (Low)
Status (-ve) | | Potential impac | t BEFORE mi | itigation | | | | Mitigation | Potential impact AFTER mitigation | | | | | | |----------------------|-------------|-----------|-------------|-----------|--------------|--------------------------|-----------------------------------|--------|-------------|-----------|---------------|--| | Nature of the impact | Duration | Extent | Probability | Magnitude | Significance | - Measures | Duration | Extent | Probability | Magnitude | Significanc e | | | | | | | | | unnecessarily | • The | | | | | | | | | | | | | | contractor | | | | | | | | | | | | | | must ensure | | | | | | | | | | | | | | that no faunal | | | | | | | | | | | | | | species are | | | | | | | | | | | | | | disturbed, | | | | | | | | | | | | | | trapped, | | | | | | | | | | | | | | hunted or | | | | | | | | | | | | | | killed during | | | | | | | | | | | | | | the pre-and construction | | | | | | | | | | | | | | phases. | Vehicles | | | | | | | | | | | | | | must adhere to the set | | | | | | | | | | | | | | speed limit. | • All | | | | | | | | | | | | | | construction | | | | | | | | | | | | | | vehicles must use | | | | | | | | | | | | | | designated | | | | | | | | | | | | | | access roads. | | | | | | | | | | | | | | Off-road | | | | | | | | | | | | | | driving should | | | | | | | | | | | | | | be strictly | | | | | | | | | | | | | | prohibited. | | | | | | | | | | | | | | • Fauna | | | | | | | | | | | | | | (mammals | | | | | | | | | | | | | | and reptiles) | | | | | | | | | | | | | | that become | | | | | | | | | | | | | | trapped in | | | | | | | | | | | | | | any | | | | | | | | | | | | | | excavation or | | | | 1 | | | | | | | | | | in any | | | | | | | | Potential impac | t BEFORE mit | igation | | | | Mitigation | Potential impact AFTER mitigation | | | | | | |--|------------------|-----------------|------------------------|-----------|---------------------------|---|-----------------------------------|-----------|--------------|---------------------------|-----------------------------|--| | Nature of the impact | Duration | Extent | Probability | Magnitude | Significance | - Measures | Duration | Extent | Probability | Magnitude | Significanc
e | | | | | | | | | construction related activity, may not be harmed and must be rescued and relocated by suitably qualified personnel. • Any fauna threatened by the construction activities should be removed to safety by the ECO or any suitable qualified personnel. | | | | | | | | Encroachment
, proliferation
and spread of
weeds and
alien invasive
plant species | Permanent
(5) | Regional
(3) | Highly
Probable (4) | High (10) | 72 (High)
Status (-ve) | Alien invasive plants (listed in this study) can be removed manually or with the help of simple tools. This entails damaging or removing the plant by physical | Medium to
long term
(4) | Local (2) | Probable (3) | Moderate to
slight (4) | 30 (Medium)
Status (-ve) | | | Potential impac | t BEFORE m | itigation | | | | Mitigation | Potential in | npact AFTE | R mitigation | | | |----------------------|------------|-----------|-------------|-----------|--------------|----------------|--------------|------------|--------------|-----------|---------------| | Nature of the impact | Duration | Extent | Probability | Magnitude | Significance | Measures | Duration | Extent | Probability | Magnitude | Significanc e | | • | | | | | | action. | | | | | | | | | | | | | Different | | | | | | | | | | | | | techniques | | | | | | | | | | | | | could be | | | | | | | | | | | | | used, e.g., | | | | | | | | | | | | | uprooting, | | | | | | | | | | | | | ring-barking | | | | | | | | | | | | | or bark | | | | | | | | | | | | | stripping. | | | | | | | | | | | | | These control | | | | | | | | | | | | | options are | | | | | | | | | | | | | only really | | | | | | | | | | | | | feasible in | | | | | | | | | | | | | sparse | | | | | | | | | | | | | infestations | | | | | | | | | | | | | or on small | | | | | | | | | | | | | scale, and for | | | | | | | | | | | | | controlling | | | | | | | | | | | | | species that | | | | | | | | | | | | | do not | | | | | | | | | | | | | coppice after | | | | | | | | | | | | | cutting. It | | | | | | | | | | | | | would be | | | | | | | | | | | | | preferable to | | | | | | | | | | | | | uproot alien | | | | | | | | | | | | | vegetation to | | | | | | | | | | | | | limit regrowth | | | | | | | | | | | | | after cutting. | | | | | | | | | | | 1 | | It should be | | | | | | | | | | | | | noted that all | | | | | | | | | | | | | infestations | | | | | | | | | | | | | cannot be | | | | | | | | | | | | | cleared at | | | | | | | | |
 | | | once, as | | | | | | | | | | | | | these plant | | | | | | | | | | | | | species do | | | | | | | | | | | | | currently play | | | | | | | Potential impac | t BEFORE r | nitigatio | on | | | | Mitigation | Potential impact AFTER mitigation | | | | | | |---|-----------------------------|-----------------|--------|------------------------|---------------------------|-------------------------|---|-----------------------------------|-------------------------|----------------|------------|--------------------------|--| | Nature of the impact | Duration | Ext | tent | Probability | Magnitude | Significance | - Measures | Duration | Extent | Probability | Magnitude | Significanc
e | | | | | | | | | | a role in stabilising soils and therefore, the sequence of alien plant removal should be planned, along with revegetation of the cleared areas. Regular monitoring for alien invasive plants within the study area as well as adjacent areas which receive runoff as there are also likely to be prone to invasion problems. | | | | | | | | Inadvertent
killing and
injury of fauna
species during
vegetation
clearance. | Short
medium
term (2) | to Site spe (1) | ecific | Highly
Probable (4) | Slight to
moderate (4) | 28 Low)
Status (-ve) | If possible,
the clearance
of vegetation
should
commence
during non-
breeding
season of
fauna species
(i.e., winter). | Short to
medium
term (2) | Site
specific
(1) | Improbable (2) | Slight (2) | 10 (Low)
Status (-ve) | | | Potential impac | t BEFORE m | itigation | | | | Mitigation | Potential in | npact AFTE | R mitigation | | | |----------------------|------------|-----------|-------------|-----------|--------------|----------------------|--------------|------------|--------------|-----------|------------------| | Nature of the impact | Duration | Extent | Probability | Magnitude | Significance | - Measures | Duration | Extent | Probability | Magnitude | Significanc
e | | | | | | | | Any fauna | | | | | | | | | | | | | threatened by | | | | | | | | | | | | | the | | | | | | | | | | | | | construction | | | | | | | | | | | | | activities | | | | | | | | | | | | | should be | | | | | | | | | | | | | moved to | | | | | | | | | | | | | safety by a suitable | | | | | | | | | | | | | qualified ECO | | | | | | | | | | | | | or an | | | | | | | | | | | | | Ecologist. | | | | | | | | | | | | | All personnel | | | | | | | | | | | | | should | | | | | | | | | | | | | undergo an | | | | | | | | | | | | | environmenta | | | | | | | | | | | | | I induction | | | | | | | | | | | | | with regards | | | | | | | | | | | | | to fauna, in | | | | | | | | | | | | | particular | | | | | | | | | | | | | awareness | | | | | | | | | | | | | about | | | | | | | | | | | | | harming or | | | | | | | | | | | | | collecting | | | | | | | | | | | | | species such | | | | | | | | | | | | | as snakes, | | | | | | | | | | | | | tortoises. | | | | | | | | | | | | | If trenches | | | | | | | | | | | | | are to be dug, | | | | | | | | | | | | | these should | | | | | | | | | | | | | not be left | | | | | | | | | | | | | open for | | | | | | | | | | | | | extended | | | | | | | | | | | | | periods of | | | | | | | 1 | | | | | | time as fauna | | | | | | | | | | | | | may fall in | | | | | | | Potential impac | t BEFORE m | itigation | | | | Mitigation | Potential impact AFTER mitigation | | | | | | |----------------------|------------|-----------|-------------|-----------|--------------|-----------------|-----------------------------------|--------|-------------|-----------|---------------|--| | Nature of the impact | Duration | Extent | Probability | Magnitude | Significance | Measures | Duration | Extent | Probability | Magnitude | Significanc e | | | | | | | | | and become | | | | | | | | | | | | | | trapped in | | | | | | | | | | | | | | them. | | | | | | | | | | | | | | Trenches | | | | | | | | | | | | | | which are left | | | | | | | | | | | | | | open should | | | | | | | | | | | | | | have places | | | | | | | | | | | | | | where there | | | | | | | | | | | | | | are soil | | | | | | | | | | | | | | ramps, which | | | | | | | | | | | | | | will allow | | | | | | | | | | | | | | fauna to | | | | | | | | | | | | | | escape the | | | | | | | | | | | | | | trench. | | | | | | | | | | | | | | No animals | | | | | | | | | | | | | | should be | | | | | | | | | | | | | | intentionally | | | | | | | | | | | | | | destroyed or | | | | | | | | | | | | | | killed, and no | | | | | | | | | | | | | | hunting or | | | | | | | | | | | | | | poaching of | | | | | | | | | | | | | | animals is | | | | | | | | | | | | | | allowed in the | | | | | | | | | | | | | | project site or | | | | | | | | | | | | | | adjacent | | | | | | | | | | | | | | areas. | | | | | | | | | | | | | | No food or | | | | | | | | | | | | | | similar waste | | | | | | | | | | | | | | that may | | | | | | | | | | | | | | attract wild | | | | | | | | | | | | | | animals | | | | | | | | | | | | | | should be | | | | | | | | | | | | | | disposed of at | | | | | | | | | | | | | | the site. All | | | | | | | | | | | | | | food and litter | | | | | | | | | | | | | | waste should | be placed in | | | | | | | | Potential impac | t BEFORE mit | igation | | | | Mitigation | Potential impact AFTER mitigation | | | | | | |--|--------------|-----------|------------------------|--------------|-----------------------------|---|-----------------------------------|-------------------|----------------|------------|--------------------------|--| | Nature of the impact | Duration | Extent | Probability | Magnitude | Significance | - Measures | Duration | Extent | Probability | Magnitude | Significanc
e | | | | | | | | | sealed bins
and removed
from the site
each day. | | | | | | | | | | | | | | In order to
reduce
collisions of
vehicles with
fauna,
animals | | | | | | | | | | | | | | should have right of way. | | | | | | | | Operational pha | ases | | | | | | | | | | | | | Erosion caused by inadequate/fail ing stormwater management measures/desi gns. | Medium (3) | Local (2) | Highly
Probable (4) | Moderate (6) | 44 (Medium)
Status (-ve) | Regular monitoring for erosion after construction to ensure that no erosion problems have developed as result of the disturbance. All erosion problems observed should be rectified as soon as possible, using the appropriate soil erosion control structures | Short to medium term (2) | Site specific (1) | Improbable (2) | Slight (2) | 10 (Low)
Status (-ve) | | | Potential impac | t BEFORE mi | tigation | | | | Mitigation | Potential impact AFTER mitigation | | | | | | |---|--------------------------|-------------------|------------------------|------------------------|-------------------------|--|-----------------------------------|-------------------|----------------|------------|--------------------------|--| | Nature of the impact | Duration | Extent | Probability | Magnitude | Significance | - Measures | Duration | Extent | Probability | Magnitude | Significanc
e | | | | | | | | | and revegetation techniques. • All cleared areas should be landscaped and/or re- vegetated. | | | | | | | | Disturbance of local fauna populations. | Short to medium term (2) | Site specific (1) | Highly
Probable (4) | Slight to moderate (4) | 28 Low)
Status (-ve) | Animals residing within the designated area shall not be unnecessarily disturbed. No hunting, trapping, killing of any animal should be permitted. Snake and or animal handling should be strictly limited to qualified staff or a dedicated external snake handler. When accessing the site, vehicles are to utilise | Short to medium term (2) | Site specific (1) | Improbable (2) | Slight (2) | 10 (low)
Status (-ve) | | | Potential impa | ntial impact BEFORE mitigation | | | | | Mitigation | Potential impact AFTER mitigation | | | | | | |----------------------|--------------------------------|--------|-------------|-----------|--------------|---|-----------------------------------|--------|-------------|-----------|---------------|--| | Nature of the impact | Duration | Extent | Probability | Magnitude | Significance | - Measures | Duration | Extent | Probability | Magnitude | Significanc e | | | | | | | | | the existing roads. Ensure that no unnecessary
clearing of faunal habitat occurs during maintenance activities. No fires by maintenance personnel are allowed. No wild animal may be fed on site. Ensure that the site is kept clean, tidy and free of rubbish that would attract animal pests. All vehicles accessing the site should avoid collisions with susceptible species such as snakes and small rodents. All waste generated at | | | | | | | | Potential impac | t BEFORE miti | gation | | | | Mitigation | Potential impact AFTER mitigation | | | | | | |---|-------------------------|-------------------|--------------|------------------------|--------------------------|---|-----------------------------------|-----------|------------------------|----------------------|-----------------------------|--| | Nature of the impact | Duration | Extent | Probability | Magnitude | Significance | - Measures | Duration | Extent | Probability | Magnitude | Significanc
e | | | | | | | | | should be kept in scavenger proof bins and removed from site at regular intervals. | | | | | | | | Rehabilitation/l andscaping of the site after construction activities | Medium to long term (4) | Site specific (1) | Probable (3) | Slight to moderate (4) | 27 (Low)
Status (-ve) | Bare surfaces should be grassed as soon as possible after construction to minimise time of exposure. Take appropriate remedial action where vegetation establishmen t is unsuccessful or erosion is evident. As much vegetation growth as possible should be promoted within the study area in order to protect soils and to reduce the | Permanen t (5) | Local (2) | Highly
Probable (4) | Moderate to high (8) | 60 (Medium)
Status (-ve) | | | Potential impac | Potential impact BEFORE mitigation | | | | | | Potential impact AFTER mitigation | | | | | | |----------------------|------------------------------------|--------|-------------|-----------|--------------|--|-----------------------------------|--------|-------------|-----------|------------------|--| | Nature of the impact | Duration | Extent | Probability | Magnitude | Significance | - Measures | Duration | Extent | Probability | Magnitude | Significanc
e | | | | | | | | | percentage of
the surface
area which is
left as bare
ground. | | | | | | | # 13 CONCLUSION AND RECOMMENDATIONS The proposed pipe upgrade route is situated along the servitudes/ road reserve, and traverses main roads such as Marlboro and M1. It is situated in an urban environment and most of the plants were cultivated as part of street trees project, landscaping and gardening. During the field survey, no threatened plant species or protected trees were observed along the proposed route. However, the following plant species are listed as "Protected Plants" in terms of Schedule 11 (Section 86 (1) (a)) of Transvaal Nature Conservation Ordinance No. 12 of 1983, namely all species of agapanthus *Agapanthus africanus*. A plant species such as *Hypoxis hemerocallidea*, is listed as Orange Listed Plant species. Orange lists are those within the Red list that are categorised as rare, Data deficient, declining or near threatened. *Hypoxis hemerocallidea* occurs in an open grassland and woodland and is widespread in South Africa in the eastern summer rainfall provinces (Eastern Cape, Free State, KwaZulu-Natal, Mpumalanga, Gauteng and Limpopo). It also occurs in Botswana, Lesotho and Swaziland and it's a highly sought-after medicinal plant. This species used to be classified as *Declining*, but now de-classified as *Least concern*. Species classified as Least concern are considered at low risk of extinction and are widespread and abundant, however, GDARD has indicated that this species must remain classified as Orange list plant species due to its provincial level pressures. Therefore, in order to mitigate the impacts to these plant species, all provincially protected plant species and Orange listed plants found along the route, should be protected and avoided. These plants should be planted just outside of the development route after the completion of construction activities. Where this proves not to be possible, a permit will be required from GDARD to transplant these plant species outside of the proposed pipeline route or donated to Conservation areas. The permit application should be preceded by a Search, Rescue and Relocation Plan. This Plan must be compiled by a competent Ecologist/Botanist. This Plan should also take into account medicinal plant species such as *Albuca virens* recorded along the route site Fauna species recorded along the proposed route were common and are typical of grassland vegetation. No fauna Species of Conservation Concern were recorded along the study route. The fragmented and transformed area has lost the ecological ability to sustain any faunal assemblage or community. The human presence and associated disturbances taking place usually have a detrimental impact on fauna species (especially mammals and snakes) in the area. Generally, the development activities proposed within the route will not have a significant impact on biodiversity conservation within the region. It is the opinion of the ecologist, that the proposed water pipeline upgrade project be considered favourably, provided that the mitigation measures are implemented and adhered to. The methodologies used and results found during the field survey, together with the impacts and mitigation measures provide confidence that the project can go ahead. # 14 REFERENCES ALEXANDER, G. & MARAIS, J. (2007). A Guide to the Reptiles of Southern Africa. Struik Nature, Cape Town. BATES, M.F., BRANCH, W.R., BAUER, A.M., BURGER, M., MARAIS, J., ALEXANDER, G.J. & DE VILLIERS, M.S. (2014). Atlas and Red List of the Reptiles of South Africa, Lesotho and Swaziland. Suricata 1. South African National Biodiversity Institute, Pretoria. BARNES, K.N. (ed.) (1998). The Important Bird Areas of Southern Africa. BirdLife South Africa: Johannesburg. BARNES, K.N. (ed.) (2000). The Eskom Red Data Book of Birds of South Africa, Lesotho & Swaziland. Birdlife South Africa, Johannesburg. BRANCH, W.R. (1988). South African Red Data Book - Reptiles and Amphibians. South African National Scientific Programmes Report No. 151. CSIR, Pretoria. BRANCH, B. (2001). Snakes and Other Reptiles of Southern Africa. Struik Publishers, South Africa. BROMILOW, C. (2018). Problem plants and Alien weeds of South Africa. Briza Publications, Revised Edition, Pretoria. CHILD MF, ROXBURGH L, DO LINH SAN E, RAIMONDO D, DAVIES-MOSTERT HT, EDITORS. (2016). The Red List of Mammals of South Africa, Swaziland and Lesotho. South African National Biodiversity Institute and Endangered Wildlife Trust, South Africa. DRIVER, A., MAZE, K., LOMBARD A.T., NEL, J., ROUGET, M., TURPIE, J.K., COWLING, R.M., DESMET, P., GOODMAN, P., HARRIS, J., JONAS, Z., REYERS, B., SINK, K. & STRAUSS, T. (2004). South African National Spatial Biodiversity Assessment 2004: Summary Report. South African National Biodiversity Institute, Pretoria. DRIVER A, SINK, KJ, NEL, JN, HOLNESS, S, VAN NIEKERK, L, DANIELS, F, JONAS, Z, MAJIEDT, PA, HARRIS, L & MAZE, K (2012). National Biodiversity Assessment 2011: An assessment of South Africa's biodiversity and ecosystems. Synthesis Report. South African National Biodiversity Institute and Department of Environmental Affairs, Pretoria. FITZPATRICK INSTITUTE OF AFRICAN ORNITHOLOGY (2022). MammalMAP Virtual Museum. Accessed at http://vmus.adu.org.za/?vm=MammalMAP on 2022-11-24. FITZPATRICK INSTITUTE OF AFRICAN ORNITHOLOGY (2022). ReptileMAP Virtual Museum. Accessed at http://vmus.adu.org.za/?vm=ReptileMAP on 2022-11-24. FRIEDMANN, Y. & DALY, B, (EDITORS) (2004). Red Data Book of the mammals of South Africa: a conservation assessment: CBSG southern Africa, Conservation Breeding Specialist Group (SSC/IUCN). Endangered Wildlife Trust, South Africa. GAUTENG CONSERVATION PLAN VERSION 3.3 (C-Plan 3.3) (2011). Gauteng Department of Agriculture and Rural Development. Directorate Nature Conservation. Technological Services. HARRISON, J.A., ALLAN, D.G., UNDERHILL, L.G., HERREMANS, M., TREE, A.J., PARKER, V. & BROWN, C.J. (EDS) (1997). The atlas of Southern African birds. Vols. 1&2. BirdLife South Africa, Johannesburg. HENDERSON, L. 2001. Alien weeds and invasive plants. ARC, Pretoria. JACOBSEN, N. (2005). Remarkable Reptiles of South Africa. Briza Publications. Pretoria. South Africa. KREMEN, C. (2005). Managing ecosystem services: what do we need to know about their ecology? Ecology Letters 8: 468-479. LOW, A.B & REBELO, A.G. (1996). Vegetation of South Africa, Lesotho and Swaziland. Department of Environmental Affairs and Tourism, Pretoria. LOWREY, T.K. & WRIGHT, S. (1987). The Flora of the Witwatersrand. Volume I: The Monocotyledonae. Witwatersrand University Press, Johannesburg. MANNING, J. (2009). Field guide to the wild flowers of South Africa. Struik, Cape Town. MARAIS, E. & PEACOCK, F. (2008). The chamberlain guide to birding Gauteng. Miranda Publishing. Cape Town. MONADJEM, A., TAYLOR, P.J., COTERRILL, F.D.P. & SCHOEMAN, C. (2010). Bats of southern and central Africa: a biogeographic and taxonomic synthesis. Wits University Press, Johannesburg. MUCINA, L. & RUTHERFORD, M.C. (eds). (2006). The vegetation of South Africa, Lesotho and Swaziland. *Strelitzia* 19. South African Biodiversity Institute, Pretoria. MUCINA, L. AND RUTHERFORD, M.C. (eds) (Reprint 2011) The Vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19, South African National Biodiversity Institute (SANBI), Pretoria. MUCINA
AND RUTHERFORD (2018) Terrestrial ecosystem threat status and protection level - remaining extent [Vector] 2018. Available from the Biodiversity GIS website, downloaded on 04 November 2019 PFAB (2001) Departmental Policy. Development Guidelines for Ridges. Gauteng Department of Agriculture, Conservation, Environment and Land Affairs. Directorate: Nature Conservation. POOLEY, E.S. (1998). A Field Guide to Wildflowers Kwazulu-Natal and the eastern region. Natal Flora Publishers Trust: Durban, South Africa. PRIMACK, R.B. (1995). A Primer of Biology. Sinauer Associates Conservation, U.S.A. 277 pages. RAIMONDO, D., VON STADEN, L., FODEN, W., VICTOR, J.E., HELME, N.A., TURNER, R.C., KAMUNDI, D.A. & MANYAMA, P.A. (eds) In press. Red List of South African plants. *Strelitzia* 25. South African National Biodiversity Institute, Pretoria. SANBI (2009). Draft Threatened Ecosystems in South Africa: Descriptions and Maps. Department of Environmental Affairs and Tourism. Pretoria. SAMWAYS, M. & HATTON, M. (2000). Palmnut Post, Vol 3, No 2, 9-11. SKINNER, J.D. & CHIMIMBA, C. T. (2005). The Mammals of the Southern African Subregion. Cambridge University Press, Cambridge. SKOWNO, A.L., RAIMONDO, D.C., POOLE, C.J., FIZZOTTI, B. & SLINGSBY, J.A. (EDS.). (2019). South African National Biodiversity Assessment 2018 Technical Report Volume 1: Terrestrial Realm. South African National Biodiversity Institute, Pretoria STUART, C. & STUART, T. (1994). A field guide to the tracks and signs of Southern, Central East African Wildlife. Struik Nature, Cape Town. STUART, C. & STUART, T. (1988). Field Guide to the Mammals of Southern Africa. Struik Publishers, Cape Town. TAYLOR, M.R, PEACOCK F, WANLESS R.W (EDS). (2015). The Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland. Birdlife South Africa. Johannesburg. South Africa VAN OUDSHOORN, F. (1999). Guide to grasses of southern Africa. Briza Publications, Pretoria. VAN WYK, B., VAN OUDTSHOORN, B. AND GERICKE, N. (1997). Medicinal plants of South Africa. Briza Publications, Pretoria.