Crossman, Pape & Associates

Consulting Geotechnical Engineers & Engineering Geologists

P.O. Box 3557 Cramerview 2060. Tel: (011) 465-1699. Cell 082 556 7302. E-mail: mark@crossmanpape.co.za

REPORT NO 20/91/DK

MAY 2021

<u>GEOTECHNICAL INVESTIGATION FOR HALFWAY HOUSE WATER UPGRADE</u> PROJECT: MIDRAND AND WATERFALL CITY, GAUTENG – FINAL

1. INTRODUCTIONS AND TERMS OF REFERENCE

At the request of Ms. T. Sibambato of Zutari Consulting Engineers, acting on behalf of Johannesburg Water (SOC) Ltd, we have carried out a geotechnical investigation for the proposed bulk water supply pipeline from Midrand to Waterfall City. Confirmation of our appointment to proceed with the investigation was received via an E-mail from Ms. T. Sibambato on 30 October 2020. A comprehensive Phase 1 preliminary report was submitted to Zutari on 16 December 2020. This Phase 2 report includes additional test pit profile information, as well as Dynamic Probe Super-Heavy test data. A comprehensive preliminary report excluding laboratory test results was submitted to the Client on 1 February 2021.

The following documents have been received from Zutari to assist with the investigation:

- Halfway House Water Upgrade Project: Geotechnical Investigation Scope of Work Document.
- Google Earth KMZ. file indicating the route of the proposed pipeline.
- Drawings indicating dimensions of the pipeline along the proposed route.
 inclusive of pipe-jacked sections below Allandale Road and the N1 Highway.
- Several Wayleaves for affected areas.

The proposed pipeline is of the order of 7,8 km in length and will aid in water supply to Midrand and Waterfall City. The invert levels for the pipeline are variable, ranging between 2,0m to 3,0m below existing ground surface for the most part, extending to depths of between 4,0m and 20,0m, below present ground surface, in areas of pipe-jacking below road surfaces.

The terms of reference for the investigation are as follows:

- i) to establish the nature and relevant engineering properties of the upper soil and rock strata underlying the site.
- ii) to comment on suitable excavation procedures for the installation of the pipeline.

- to present comments on the use of the on-site soils for use as bedding sand, selected granular material and selected fill material in terms of SANS 1200LB.
- iv) to comment on any other geotechnical aspects that may affect the development.

2. SITE DESCRIPTION

The area of investigation is situated in Midrand and Waterfall City, Johannesburg. The pipeline is proposed to run from an existing pump station on the north-eastern corner of Dale and Old Pretoria Main Road, traversing in a general southerly direction towards the Jukskei Quarry, at which point the route turns towards the west, around The Villas development (Century Properties), then northwards to the corner of Allandale Road and Harry Galaun Drive. Due to the length of the proposed pipeline, vegetation ranges considerably from short to long veld grass with large trees, paved and tarred sections. A site locality plan is presented in **Figure 1** below.

Figure 1: Site Locality Plan, Halfway House Water Upgrade Project: Midrand and Waterfall City, Gauteng.

3. <u>NATURE OF INVESTIGATION</u>

3.1 Fieldwork

Sixty-three test pits (TP1 to TP28, TP31 to TP40, TP43 to TP67) have been excavated along the proposed pipeline route from 26 November 2020 to 15

January 2020. The majority of the test pits were hand-excavated, however test pits TP31 to TP36 were excavated using a CAT 426F2 4x4 tractor-loader-backhoe (backacter). The test pits were excavated to final depths ranging between of 0,5m and 3,0m below ground surface. All test pits were profiled insitu by an engineering geologist and where necessary, disturbed soil samples were obtained for laboratory testing. The positions of the test pits are shown on the site plan enclosed in **Appendix A**. Copies of the recorded test pit soil profiles are presented in **Appendix B**. A number of Dynamic Cone Penetrometer tests were conducted at test pit positions where it was deemed prudent to make an assessment of the consistency of the soils below the hand-excavation level of 2,0m below existing ground surface for excavation purposes.

In addition to the test pitting, twelve Dynamic Prober Super-Heavy tests (DPSH1 to DPSH12) were executed at selected positions on the route. The testing was carried out in order to determine material excavatibility at depths below the termination depths of the test pits. The positions of the penetrometer tests were dictated by the locations where shallow pipe-jacking would be required below minor arterial roads. The positions of the DPSH tests are shown on the site plan enclosed in **Appendix A**. Copies of the recorded DPSH test results are presented in **Appendix D**.

Further to the above, four rotary cored boreholes (BH1 to BH4) were drilled, two at each proposed pipe-jacked positions below Allandale Road and the N1 Freeway. The rotary cored boreholes were carried out by Roelf Fourie Geotechnical Services between 24 November 2020 and 9 December 2020. The boreholes were logged by engineering geologists and a geotechnical engineer using recognised practice. The positions of the boreholes are shown on the site plan enclosed in **Appendix A**. Copies of the recorded boreholes logs are presented in **Appendix C**.

3.2 Laboratory Testing

The following laboratory tests have been carried out on the soil samples recovered from the test pits during the field investigation.

- i) Atterberg limits, particle size distribution and hydrometer analyses to determine basic engineering properties and to effect classification.
- ii) Moisture / density and California Bearing Ratio (CBR) tests to evaluate compaction and related strength characteristics.
- iii) Basson Index Tests to determine soil corrosivity towards concrete
- iv) DIN 50929-3 Tests to determine corrosivity of soil towards metal.

The laboratory test results are presented in **Appendix E**.

4. <u>SITE GEOLOGY / SOIL PROFILE</u>

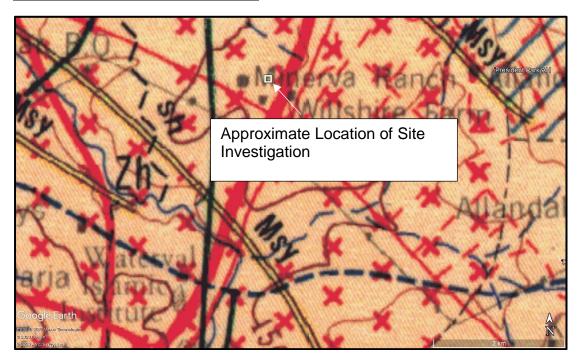


Figure 2. Regional Geology, Halfway House Water Upgrade Project: Midrand And Waterfall City, Gauteng.

Available geological maps (see **Figure 2**, above) indicate that the area of investigation is underlain by **granite** of the Johannesburg Granite Dome. This was confirmed during the present investigation. The granite has been locally intruded by a **diabase** dyke, encountered on the western-side of the N1 highway. Residual soils have developed from the weathering of the granite and diabase bedrock. The upper soil layer across the site comprises fill, transported hillwash and pebble marker horizons, inclusive of nodular and hardpan ferricrete.

Due to the length of the pipeline and materials encountered, the route has been sub-divided into six zones for ease of readability. The six sections are as follows:

- **Zone 1**: Intersection of Harry Galaun Drive and Allandale road, to the Waterfall Country Estate GATE 2 entrance on Jukskei View Drive
- **Zone 2:** Waterfall Country Estate GATE 2 entrance on Jukskei View Drive to the eastern edge of the N1 Highway.
- **Zone 3:** Intersection of Bridal Veil Road and Old Pretoria Main Road to the Intersection of Old Pretoria Main Road and Allandale Road (including boreholes on Allandale Road).
- **Zone 4:** Intersection of Dale Road and Old Pretoria Main Road to intersection of Allandale Road and Morkels Close.
- **Zone 5:** Pipe Jacking section under Allandale Road.
- **Zone 6:** Pipe Jacking section under N1 Highway.

The zones and associated test pit and boreholes locations are enclosed in **Appendix A**. Summaries of the various soil and rock thicknesses from the test pit profiles / borehole logs, are presented in **Table 1 to 6** below.

Zone 1:

Table 1: Summary of the test pit soil horizon thickness Zone 1 (m)

					Horiz	on thickness	ses and De	scription						
TP nr.	Fill (m)	Hillwash (m)	Pebble Marker (m)	Nodular Ferricrete (m)	Hardpan Ferricrete (m)	Reworked Residual Granite (m)	Residual Granite (m)	Reworked Residual Diabase (m)	Residual Diabase (m)	Very Soft Rock Diabase (m)	Soft Rock Diabase (m)	Very Soft Rock granite (m)	Soft Rock Granite or Better (m)	Termination Depth (m)
	Silty sand with variable amounts of gravel	Silty sand with scattered gravels	Gravelly silty sand	Gravelly silty sand	Very dense to very soft rock strongly cemented silty sand	Slightly clayey silty sand with scattered fine to medium gravel	Silty sand with scattered fine to medium gravel	Slightly clayey sandy silt	Slightly clayey sandy silt					
1	0,0-2,0	-	-	-	٠	-	1	-	-	,	-	-	-	2,0
2	0,0-0,5	-	0,5-0,7	-	-	0,7-1,3	-	-	-	-	-	1,3	-	1,3
3	-	0,0-0,4	0,4-0,5	-	-	0,5-0,8	0,8-1,3	-	-	-	-	1,3	-	1,3
4	0,0-0,9	-	-	-	1,1-1,3	-	0,9-1,1	-	-	-	-	-	-	1,3
5	-	0,0-0,4	0,4-0,7	-	0,7-0,9	-	-	-	-	-	-	-	-	0,9
6	-	0,0-0,6	-	-	1,2-1,4	-	0,6-1,2	-	-	-	-	-	-	1,4
7	-	0,0-0,95	0,95-1,05	-	1,05-1,3	-	-	-	-	-	-	-	-	1,3
8	-	0,0-0,8	0,8-1,05	-	•	-	1,05-1,4	-	-		-	-	-	1,4
9	0,0-0,6	-	0,6-0,8	-	1,4	0,8-1,4		-	-	•	-	-	-	1,4
10	0,0-0,5	0,5-0,9	0,9-1,1	-		-	1,1-1,4	-	-		-	-	-	1,4
11	0,0-0,25	0,25-0,5	-	0,5-0,9	0,9	-	-	-	-	-	-	-	-	0,9

No perched water table or zones of groundwater seepage was noted in any of the test pits excavated across this zone at the time of the investigation.

Zone 2:

Table 2: Summary of the test pit soil horizon thickness Zone 2 (m)

				Horizon	thicknesse	s and Desc	ription				
TP nr.	Fill (m)	Hillwash (m)	Pebble Marker (m)	Nodular Ferricrete (m)	Hardpan Ferricrete (m)	Reworked Residual Granite (m)	Residual Granite (m)	Reworked Residual Diabase (m)	Very Soft Rock granite (m)	Soft Rock Granite or Better (m)	Termination Depth (m)
	Silty sand with variable amounts of gravel	Silty sand with scattered gravels	Gravelly silty sand	Gravelly silty sand	Very dense to very soft rock strongly cemented silty sand	Slightly clayey silty sand with scattered fine to medium gravel	Silty sand with scattered fine to medium gravel	Slightly clayey sandy silt			
12	-	0,0-0,3	0,3-0,5	-	-	0,5-0,8	0,8-2,0		2,0		2,0
13	-	-	0,0-0,2	-	-	0,2-1,3	-	-	-	-	1,3
14	-	0,0-0,5	0,5-0,8	-	-	0,8-1,6	1,6-2,0	-	-	-	2,0
15	-	0,0-0,3	0,3-0,5	-	-	0,5-0,7	0,7-2,2	-	2,2	-	2,2
16	•	0,0-0,3	0,3-0,4	•	-	0,4-0,8	0,8-2,1	-	2,1	-	2,1
17	•	0,0-0,2	0,2-0,6	•	-	0,6-1,6	1,6-2,1	-		-	2,1
18	-	0,0-0,2	0,2-0,4	-	-	ı	0,4-0,6	ı	-	0,6	0,6
19	-	0,0-0,4	-		-	-	0,4-1,6	ı	1,6	-	1,6
20	0,0-0,4	-	-	-	-	-	0,4-1,0	-	1,0	-	1,0
21	0,0-0,4	-	-	-	-	-	0,4-1,0	-	1,0	-	1,0
22	0,0-0,4	-	-	-	-	-	0,4-1,0	-	1,0	-	1,0
23	0,0-1,4	-	-	-	-	-	1,4-1,6	-	1,6	-	1,6
24	0,0-1,4	-	-	-	-	-	1,4-1,6	-	1,6	-	1,6
25	0,0-2,0	-	-	-	-	-	-	-	-	-	2,0
26	0,0-2,0	-	-	-	-	-	-	-	-	-	2,0
27	0,0-2,0	-	-	-	-	-	-	-	-	-	2,0
28	0,0-0,3	0,3-1,5	-	-	-	-	-	1,5-2,0	-	-	2,0

Slight seepage was encountered at the base of test pits TP14 and TP19 at the time of the investigation. $\,$

Zone 3:

Table 3: Summary of the test pit soil horizon thickness Zone 3 (m)

				Horizon thic	kness and D	Description				
TP nr.	Fill (m)	Hillwash (m)	Pebble Marker (m)	Nodular Ferricrete (m)	Hardpan Ferricrete (m)	Reworked Residual Granite (m)	Residual Granite (m)	Very Soft Rock granite (m)	Soft Rock Granite or Better (m)	Termination Depth (m)
	Silty sand with variable amounts of gravel	Silty sand with scattered gravels	Gravelly silty sand	Gravelly silty sand	Very dense to very soft rock strongly cemented silty sand	Slightly clayey silty sand with scattered fine to medium gravel	Silty sand with scattered fine to medium gravel			
31	-	0,0-0,35	0,35-0,5	0,5-1,7	-	-	1,0-3,0		-	3,0
32	-	0,0-0,3	0,3-0,5	0,5-1,5	-	-	1,5-3,0	-	-	3,0
33	-	0,0-0,4	0,4-0,6	0,6-1,3	-	-	1,3-3,0	1	-	3,0
34	-	0,0-0,3	-	0,3-1,5	-	-	1,5-3,0	-	-	3,0
35	-	-	-	-	-	-	-	-	0,0	0,0
36	-	-	0,0-0,3	0,3-0,5	0,5-2,0	-	2,0-3,0	-	-	3,0

Slight seepage was encountered at the base of test pit TP36 at the time of the investigation. It should be noted that hard rock granite was present at test pit TP35 at surface.

Zone 4:

Table 4: Summary of the test pit soil horizon thickness Zone 4 (m)

			H	lorizon thick	nesses and	Description				
TP nr.	Fill (m)	Hillwash (m)	Pebble Marker (m)	Nodular Ferricrete (m)	Hardpan Ferricrete (m)	Reworked Residual Granite (m)	Residual Granite (m)	Very Soft Rock granite (m)	Soft Rock Granite or Better (m)	Termination Depth (m)
	Silty sand with variable amounts of gravel	Silty sand with scattered gravels	Gravelly silty sand	Gravelly silty sand	Very dense to very soft rock strongly cemented silty sand	Slightly clayey silty sand with scattered fine to medium gravel	Silty sand with scattered fine to medium gravel			
46	0,0-2,0	-	-	-	-	-	-	-	-	2,0
47	0,0-2,0	-	-	-	-	-	-	-	-	2,0
48	0,0-0,8	-	-	-	-	-	-	-	0,8	0,8
49	0,0-1,5	-	-	-	1,5-1,6	-	-	-	-	1,6
50	0,0-1,0	-	-	1,0-1,1	-	-	-	-	-	1,1
51	0,0-0,12	-	-	1,2-1,5		-	-	-	-	1,5
52	-	-	-	0,0-0,9	0,9-1,5	-	-	-	-	1,5
53	0,0-0,2	-	-	0,2-0,7	0,7-1,4	-	-	-	-	1,4
54	-	0,0-0,5	0,5-0,8	0,8-0,9	-	-	-	-	-	0,9
55	-	0,0-0,5	-	-	-	-	0,5-1,4	1,4	-	1,4
56	0,0-0,5	0,5-0,9	-	0,9-1,2	1,2-1,4	-	-	-	-	1,4
57 58	0,0-1,3	- 0012	-	1,3-1,4	1,4-1,5	-	-	-	-	1,5
58 59	0,0-0,9	0,9-1,3 0,0-1,3	-	1,3-1,5	1,5-1,6	-	-	-	-	1,6 1,4
60	0.0-0.2	0,0-1,3	-	1,3-1,4 1,0-1,2	1,4 1,2	-	-	-	-	1,4
61	0,0-0,2	0,2-1,0	-	1,4-1,6	1,6-1,7	-	-	-	-	1,7
62	0,0-0,7	0,7-1,4	-	1,4-1,0	-	-	-	-		1,7
63	0,0-0,7	-			-	-	-			0,5
64	0,0-0,15	0,15-0,7	-	0,7-0,85	0.85-0.9	_	-		-	0,9
65	0,0-0,13	0,13-0,7	-	1,3-1,5	1,5-1,6	_	_		-	1,6
66	0,0-0,7	0,7-0,85	_	0,85-1,1	1,1-1,2	-	-	_	_	1,2
67	0,0-1,6	-	-	-	-	_	-	_	_	1,6

Slight groundwater seepage was encountered at the base of test pit TP58 and TP62 at the time of the investigation.

Zone 5:

Table 5: Summary of the borehole soil and rock horizon thickness Zone 5 (m)

					Н	lorizon thick	nesses and	I Description	1					
	Fill (m)	Hillwash (m)	Pebble Marker (m)	Nodular Ferricrete (m)	Hardpan Ferricrete (m)	Reworked Residual Granite (m)	Residual Granite (m)	Reworked Residual Diabase (m)	Residual Diabase (m)	Very Soft Rock Diabase (m)	Soft Rock Diabase (m)	Very Soft Rock granite (m)	Soft Rock Granite or Better (m)	Termination Depth (m)
	Silty sand with variable amounts of gravel	Silty sand with scattered gravels	Gravelly silty sand	Gravelly silty sand	Very dense to very soft rock strongly cemented silty sand	Slightly clayey silty sand with scattered fine to medium gravel	Silty sand with scattered fine to medium gravel	Slightly clayey sandy silt	Slightly clayey sandy silt					
BH1	0,0-0,5	-	-	0,5-0,85	0,85-1,65	1,65-2,85	2,85-6,4	-	-	-	-	-	6,4-10,0	10,0
ВН2	0,0-1,6	1,6-1,8	-	1,8-2,0	2,0-2,3	2,3-6,2 ; 6,4- 7,5	-	-	-	-	-	-	6,2-6,4 ; 7,5- 10,0	10,0

Rest water levels of 5,0m and 3,0m were measure in boreholes BH1 and BH2, respectively.

Zone 6:

Table 6: Summary of the borehole soil and rock horizon thickness Zone 6 (m)

					Horiz	zon thicknes	ses and D	escription						
	Fill (m)	Hillwash (m)	Pebble Marker (m)	Nodular Ferricrete (m)	Hardpan Ferricrete (m)	Reworked Residual Granite (m)	Residual Granite (m)	Reworked Residual Diabase (m)	Residual Diabase (m)	Very Soft Rock Diabase (m)	Soft Rock Diabase (m)	Very Soft Rock granite (m)	Soft Rock Granite or Better (m)	Termin ation Depth (m)
	Silty sand with variable amounts of gravel	Silty sand with scattered gravels	Gravelly silty sand	Gravelly silty sand	Very dense to very soft rock strongly cemented silty sand	Slightly clayey silty sand with scattered fine to medium gravel	Silty sand with scattered fine to medium gravel	Slightly clayey sandy silt	Slightly clayey sandy silt					
ВН3	-	0,0-1,0	1,0-1,5	-	-	-	-		1,5-3,7	3,7-9,7	9,7-10,0	-	-	10,0
ВН4	-	0,0-1,0	-	-	-	1,0-1,4	1,4-4,5	-	-	-	-	4,5-9,0	9,0- 20,0	20,0

Rest water levels of 4,0m and 11,0m were measured in boreholes BH3 and BH4, respectively.

5. BULK EARTHWORKS

5.1 Excavation Procedures

Excavation procedures for the pipeline trench excavation has been evaluated according to the South African National Standards standardized classification for excavations (SANS 1200D, DA & DB). This evaluation and classification (as indicated in **Table 7 to 12** below) was determined by all information obtained from the test pitting, dynamic probe testing and borehole operations. the test pit profiles and DPSH tests results, excavatibility along the route of the pipeline is classified as presented in Tables 7 to 12 below.

Zone 1:

Table 7: A summary of the excavatibility of materials in Zone 1

					Hasin	on and Des								i			
					Horiz	on and Des	cription										
TP nr.	Fill (m)	Hillwash (m)	Pebble Marker (m)	Nodular Ferricrete (m)	Hardpan Ferricrete (m)	Reworked Residual Granite (m)	Residual Granite (m)	Reworked Residual Diabase (m)	Residual Diabase (m)	Very Soft Rock Diabase (m)	Soft Rock Diabase (m)	Very Soft Rock granite (m)	Soft Rock Granite or Better (m)	Termination Depth (m)	Soft Material (m)	Intermediate Material (m)	Hard Rock Material (m)
	Silty sand with variable amounts of gravel	Silty sand with scattered gravels	Gravelly silty sand	Gravelly silty sand	Very dense to very soft rock strongly cemente d silty sand	Slightly clayey silty sand with scattered fine to medium gravel	Silty sand with scattered fine to medium gravel	Slightly clayey sandy silt	Slightly clayey sandy silt								
1	0,0-2,0		-		-	-	-		-	-	-	-		2,0	0,0-3,0	-	-
2	0,0-0,5	-	0,5-0,7	-	-	0,7-1,3	-	-	-	-	-	1,3	>1,3	1,3	0,0-1,3	-	>1,3
3	-	0,0-0,4	0,4-0,5	-	-	0,5-0,8	0,8-1,3	-	-	-	-	1,3	>1,3	1,3	0,0-1,3	-	>1,3
4	0,0-0,87		-	-	1,1-1,3	-	0,8-1,1		-	-	-	-	-	1,3	0,0-1,3	1,3	-
5	-	0,0-0,4	0,4-0,7	-	0,7-0,9	-	-		-		-	-		0,9	0,0-0,7	0,7-0,9	-
6	-	0,0-0,6	-		1,2-1,35		0,6-1,2			-	-			1,4	0,0-1,2	1,2-1,35	-
7		0,0-0,95	0,95-1,05	-	1,05-1,25		-			-	-			1,3	0,0-1,05	1,05-1,25	-
8	-	0,0-0,8	0,8-1,05		-		1,05-1,4	,	-	-	-		•	1,4	0,0-1,4	-	>1,4
9	0,0-0,6	-	0,6-0,8	-	1,4	0,8-1,4	-	-	-	-	-		-	1,4	0,0-1,4	1,4	-
10	0,0-0,5	0,5-0,9	0,9-1,1	-	-		1,1-1,4	-	-	-	-	-	-	1,4	0,0-1,4	-	>1,4
11	0,0-0,25	0,25-0,5	-	0,5-0,85	0,9	-	-		-	-	-	-		0,9	0,0-0,9	0,9	-

Zone 2:

Table 8: A summary of the excavatibility of materials in Zone 2

				Но	rizon and	Description								
TP nr.	Fill (m)	Hillwash (m)	Pebble Marker (m)	Nodular Ferricrete (m)	Hardpan Ferricrete (m)	Reworked Residual Granite (m)	Residual Granite (m)	Reworked Residual Diabase (m)	Very Soft Rock granite (m)	Soft Rock Granite or Better (m)	Termination Depth (m)	Soft Material (m)	Intermediate Material (m)	Hard Rock Material (m)
	Silty sand with variable amounts of gravel	Silty sand with scattered gravels	Gravelly silty sand	Gravelly silty sand	Very dense to very soft rock strongly cemente d silty sand	Slightly clayey silty sand with scattered fine to medium gravel	Silty sand with scattered fine to medium gravel	Slightly clayey sandy silt						
12	-	0,0-0,3	0,3-0,5	-	-	0,5-0,8	0,8-2,0		2,0	>2,0	2,0	0,0-2,0	-	>2,0
13	-	-	0,0-0,2	-	-	0,2-1,3	-	-	-	-	1,3	0,0-1,3	-	-
14	-	0,0-0,5	0,5-0,8	-	-	0,8-1,6	1,6-2,0	,	-	-	2,0	0,0-2,6	2,6-3,1	3,1
15	-	0,0-0,3	0,3-0,5	-	-	0,5-0,7	0,7-2,2	ı	2,2	>2,2	2,2	0,0-2,2	-	>2,2
16	-	0,0-0,3	0,3-0,4		-	0,4-0,8	0,8-2,1	,	2,1	>2,1	2,1	0,0-2,1	-	>2,1
17	-	0,0-0,2	0,2-0,6	-	-	0,6-1,6	1,6-2,1	1	-	-	2,1	0,0-3,0	-	-
18	-	0,0-0,2	0,2-0,4	-	-	1	0,4-0,6	•	-	0,6	0,6	0,0-0,6	-	0,6
19	-	0,0-0,4			-	1	0,4-1,6	,	1,6	>1,6	1,6	0,0-1,6	-	>1,6
20	0,0-0,4	•		-	-	ı	0,4-1,0	1	1,0	>1,0	1,0	0,0-1,0	-	>1,0
21	0,0-0,4	-	-	-	-	-	0,4-1,0	-	1,0	>1,0	1,0	0,0-1,0	1,0-1,5	>1,0
22	0,0-0,4	-	-	-	-		0,4-1,0	-	1,0	>1,0	1,0	0,0-1,0	1,0-1,5	>1,0
23	0,0-1,4			-	-		1,4-1,6		1,6	>1,6	1,6	0,0-1,6	1,6-2,1	>1,6
24	0,0-1,4	-	-	-	-	-	1,4-1,6	-	1,6	>1,6	1,6	0,0-1,6	1,6-2,1	>1,6
25	0,0-2,0	-	-	-	-		-	-	-	-	2,0	0,0-2,5	-	>2,5
26	0,0-2,0	-	-	-	-		-	-	-	-	2,0	0,0-2,5	-	>2,5
27	0,0-2,0	-	-	-	-	-	-	-	-	-	2,0	0,0-2,5	-	>2,5
28	0,0-0,3	0,3-1,5	-	-	-	-	-	1,5-2,0	-	-	2,0	0,0-3,0	-	-

Zone 3:

Table 9: A summary of the excavatibility of materials in Zone 3

				Horizoi	n and Descr	iption							
TP nr.	Fill (m)	Hillwash (m)	Pebble Marker (m)	Nodular Ferricrete (m)	Hardpan Ferricrete (m)	Reworked Residual Granite (m)	Residual Granite (m)	Rock	Soft Rock Granite or Better (m)	Termin ation Depth (m)	Soft Material (m)	Interme diate Material (m)	Hard Rock Material (m)
	Silty sand with variable amounts of gravel	Silty sand with scattered gravels	Gravelly silty sand	Gravelly silty sand	Very dense to very soft rock strongly cemented silty sand	Slightly clayey silty sand with scattered fine to medium gravel	Silty sand with scattere d fine to medium gravel						
31	-	0,0-0,35	0,35-0,5	0,5-1,7	-	-	1,0-3,0	-	-	3,0	0,0-3,0	-	-
32	-	0,0-0,3	0,3-0,5	0,5-1,5	-	-	1,5-3,0	-	-	3,0	0,0-3,0	-	-
33	-	0,0-0,4	0,4-0,6	0,6-1,3	-	-	1,3-3,0	-	-	3,0	0,0-3,0	-	-
34	-	0,0-0,3	-	0,3-1,5	-	-	1,5-3,0	-	-	3,0	0,0-3,0	-	-
35	-	-	-	-	-	-	-	-	0,0	0,0	-	-	0,0
36			0.0-0.3	0.3-0.5	0.5-2.0	1	2.0-3.0			3.0	0.0-3.0		

Zone 4:

Table 10: A summary of the excavatibility of materials in Zone 4

				Horizo	n and Descri	ption							
TP nr.	Fill (m)	Hillwash (m)	Pebble Marker (m)	Nodular Ferricrete (m)	Hardpan Ferricrete (m)	Reworked Residual Granite (m)	Residual Granite (m)	Very Soft Rock granite (m)	Soft Rock Granite or Better (m)	Termination Depth (m)	Soft Material (m)	Intermediate Material (m)	Hard Rock Material (m)
	Silty sand with variable amounts of gravel	Silty sand with scattered gravels	Gravelly silty sand	Gravelly silty sand	Very dense to very soft rock strongly cemented silty sand	Slightly clayey silty sand with scattered fine to medium gravel	Silty sand with scattered fine to medium gravel						
44	0,0-0,4	0,4-1,0	1,0-1,15	-	-	1,15-1,5	-	-	-	1,5	0,0-3,3	3,3-3,8	3,8
45	0,0-0,2	-	-	-	-	0,2-0,6	0,6-1,5	-	-	1,5	0,0-4,8	4,8-5,3	5,3
46	0,0-2,0	-	-	-	-	-	-	-	-	2,0	2,0-3,0	-	-
47	0,0-2,0	-	-	-	-	-	-	-	-	2,0	2,0-3,0	-	-
48	0,0-0,8	-	-	-	-	-	-	-	0,8	0,8	0,0-0,8	-	0,8
49	0,0-1,5	-	-	-	1,5-1,6	-	-	-	-	1,6	0,0-1,6		>1,6
50	0,0-1,0	-	-	1,0-1,1	-	-	-	-	-	1,1	0,0-1,1	-	>1,1
51	0,0-0,12	-	-	1,2-1,5	-	-	-	-	-	1,5	0,0-1,5	1,5	-
52	-	-	-	0,0-0,9	0,9-1,5	-	-	-	-	1,5	0,0-1,5	1,5	-
53	0,0-0,2	-	-	0,2-0,7	0,7-1,4	-	-	-	-	1,4	0,0-1,4	1,4	-
54	-	0,0-0,5	0,5-0,8	0,8-0,9	-	-	-	-	-	0,9	0,0-0,9	0,9	
55	-	0,0-0,5	-	-	-	-	0,5-1,4	1,4	-	1,4	0,0-1,4	-	>1,4
56 57	0,0-0,5	0,5-0,9	-	0,9-1,2 1,3-1,4	1,2-1,4 1,4-1,5	-	-	-	-	1,4	0,0-1,4	1,4 1,5	-
58	0,0-1,3	0,9-1,3	-	1,3-1,4	1,4-1,5	-	-	-	-	1,5	0,0-1,45		-
58 59	0,0-0,9	0,9-1,3	-	1,3-1,5	1,5-1,6	-	-	-	-	1,6 1,4	0,0-1,6	1,6 1,4	
60	0.0-0.2	0,0-1,3	-	1,0-1,2	1,4	-	-	-	-	1,4	0,0-1,4	1,4	
61	0,0-0,2	0,2-1,0	-	1,4-1,6	1,6-1,7		-	-	-	1,7	0,0-1,2	1 , <u>c</u>	
62	0,0-0,7	0,7-1,4	-	- 1,4-1,0	- 1,0-1,1		-	-	-	1,7	0,0-1,03	1,5	
63	0,0-0,7	-	-	-	_	-	-	-	-	0,5	0,0-1,5	-	-
64	0,0-0,15	0,15-0,7	-	0,7-0,85	0,85-0,9	-	-	-	-	0,9	0,0-0,9	0,9	-
65	0,0-0,8	0,8-1,3	-	1,3-1,5	1,5-1,6	-	-	-	-	1,6	0,0-1,55	1,6	-
66	0,0-0,7	0,7-0,85	-	0,85-1,1	1,1-1,2	-	-	-	-	1,2	0,0-1,2	1,2	-
67	0,0-1,6	-	-	-		-	-	-	-	1,6	0,0-1,6	-	>6,0

Zone 5:

Table 11: A summary of the excavatibility of materials in Zone 5

						Horizon a	and Descri	ption									
	Fill (m)	Hillwash (m)	Pebble Marker (m)		Hardpan Ferricrete (m)	Reworked Residual Granite (m)	Residual Granite (m)	Reworked Residual Diabase (m)	Residual Diabase (m)	Very Soft Rock Diabase (m)	Soft Rock Diabase (m)	Very Soft Rock granite (m)	Soft Rock Granite or Better (m)	Termin ation Depth (m)	Soft Material (m)	Intermediate Material (m)	Hard Rock Material (m)
	Silty sand with variable amounts of gravel	with scattered	Gravelly silty sand	Gravelly silty sand	Very dense to very soft rock strongly cemente d silty sand	Slightly clayey silty sand with scattered fine to medium gravel	Silty sand with scattered fine to medium gravel	Slightly clayey sandy silt	Slightly clayey sandy silt								
ВН1	0,0-0,5	-	-	0,5-0,85	0,85-1,65	1,65-2,85	2,85-6,4	-	-	-	-	-	6,4- 10,0	10,0	0,0-0,85 ; 1,65-6,4	0,85-1,65	6,4-10,0
вн2	0,0-1,6	1,6-1,8	-	1,8-2,0	2,0-2,3	2,3-6,2 ; 6,4- 7,5	-	-	-	-	-	-	6,2-6,4 ; 7,5- 10,0	10,0	0,0-2,0 ; 2,3- 6,2 ; 6,4-7,5	2,0-2,3	6,2-6,4 ; 7,5-10,0

Zone 6:

Table 12: A summary of the excavatibility of materials in Zone 6

						Horizon a	nd Descrip	tion									
	Fill (m)	Hillwash (m)	Pebble Marker (m)	Nodular Ferricrete (m)	Hardpan	Reworked Residual Granite (m)	Residual Granite (m)	Reworked Residual Diabase (m)	Residual Diabase (m)	Rock	Rock Diabase		Soft Rock Granite or Better (m)	Termination Depth (m)	Soft Material (m)	Intermed iate Material (m)	Hard Rock Material (m)
	Silty sand with variable amounts of gravel	sand with	Gravelly silty sand	Gravelly silty sand	Very dense to very soft rock strongly cemented silty sand	Slightly clayey silty sand with scattered fine to medium gravel	Silty sand with scattered fine to medium gravel	Slightly	Slightly clayey sandy silt								
BH3	-	0,0-1,0	1,0-1,5	-	-	-	-	-	1,5-3,7	3,7-9,7	9,7-10,0	-	-	10,0	0,0-3,7	3,7-9,7	9,7-10,0
ВН4	-	0,0-1,0	-	-	-	1,0-1,4	1,4-4,5	-	-	-	-	4,5-9,0	9,0- 20,0	20,0	0,0-4,5	4,5-9,0	9,0-20,0

The following points should be noted with regards to the excavatibility of material:

- Soft to intermediate excavation material could be removed using medium to heavy earthmoving equipment and / or powertools.
- Hard rock excavation material would essentially require blasting for removal.
- Based on our experience of the granitic profile within the Midrand and Waterfall City areas, very soft rock granite material is typically of the order of 0,5m to 1,0m thick, at which point a transition to soft rock granite is encountered (blast quality material).
- As noted in the tables above, the depths to blast quality material is highly variable throughout the length of the pipeline. The undulatory topography of the granitic bedrock is a common feature within South Africa.

6. STABILITY OF OPEN TRENCH EXCAVATIONS

In general, all of the test pits excavated across the site exhibited stable sidewalls. It is envisaged that stability for open trench excavations for longer-term conditions could be provided by battering the excavation walls back to suitable slope angles. In this regard for planning and budget purposes, the recommended batter slope across the alignment should not exceed 1V:1H.

7. MATERIAL USAGE & COMMERCIAL SOURCING

Laboratory testing has been carried out on the upper soil horizons to determine their suitability for use as construction material for pipe bedding, selected granular material and selected fill material, according to SANS 1200LB. Based on the laboratory test results, as well as the fieldwork information, material usage may be summarized in as per the table below.

	POTENTIAL USES				
SOIL TYPE	SELECTED FILL	SELECTED GRANULAR	GENERAL FILL	SPOIL	COMMENTS
Fill	х		х		Upper 150mm contains abundant organic matter and should be removed to spoil. Deeper material suitable for use as indicated
Hillwash	х		х		Upper 150mm contains abundant organic matter and should be removed to spoil. Deeper material suitable for use as indicated
Pebble Marker	х		х		Where present at surface, the upper 150mm contains abundant organic material and should be removed to spoil. Deeper mater suitable for use as indicated
Nodular Ferricrete	х		х		Suitable for use as indicated
Hardpan Ferricrete	х		х		Hardpan ferricrete should be crushed to a suitable size prior to use a bedding material. Alternatively the hardpan material should be removed to spoil where encountered
Reworked Residual Granite	х		х		Suitable for use as indicated
Residual Granite	х		х		Suitable for use as indicated
Very Soft Rock Granite	x		х		Very Soft Rock Granite should be crushed to a suitable size prior to use a bedding material. Alternatively the very soft rock granite material should be removed to spoil where encountered
Soft Rock Granite or Better	х		х		Soft rock granite should be crushed to a suitable size prior to use a bedding material. Alternatively the soft rock granite should be removed to spoil where encountered
Reworked Residual Diabase				х	Moderately to highly plastic and thus unsuitable for use as construction material. Should be removed to spoil where intersected
Residual Diabase				x	Moderately to highly plastic and thus unsuitable for use as construction material. Should be removed to spoil where intersected
Very Soft Rock Diabase				х	Particle size exceeds that of 30mm. Once crushed, it is our considered opinion that this material would exhibit a moderately to high plastic nature
Soft Rock Diabase or Better	x		х		Soft rock diabase should be crushed to a suitable size prior to use a bedding material. Alternatively the soft rock diabase should be removed to spoil where encountered

It is noted from the table that none of the material encountered along the pipeline route would prove suitable for use as **bedding sand and / or selected granular material**. These would therefore need to be sourced and imported to the site for such purposes.

M CROSSMAN Pr Eng CROSSMAN, PAPE & ASSOCIATES W KRETZINGER Pr Sci. Nat

APPENDIX A: SITE PLAN WITH TEST PIT AND BOREHOLE LOCATIONS

SITE PLAN INDICATING APPROXIMATE POSITIONS OF TEST PITS, BOREHOLES AND DPSH TESTS

SCALE: NOT TO SCALE

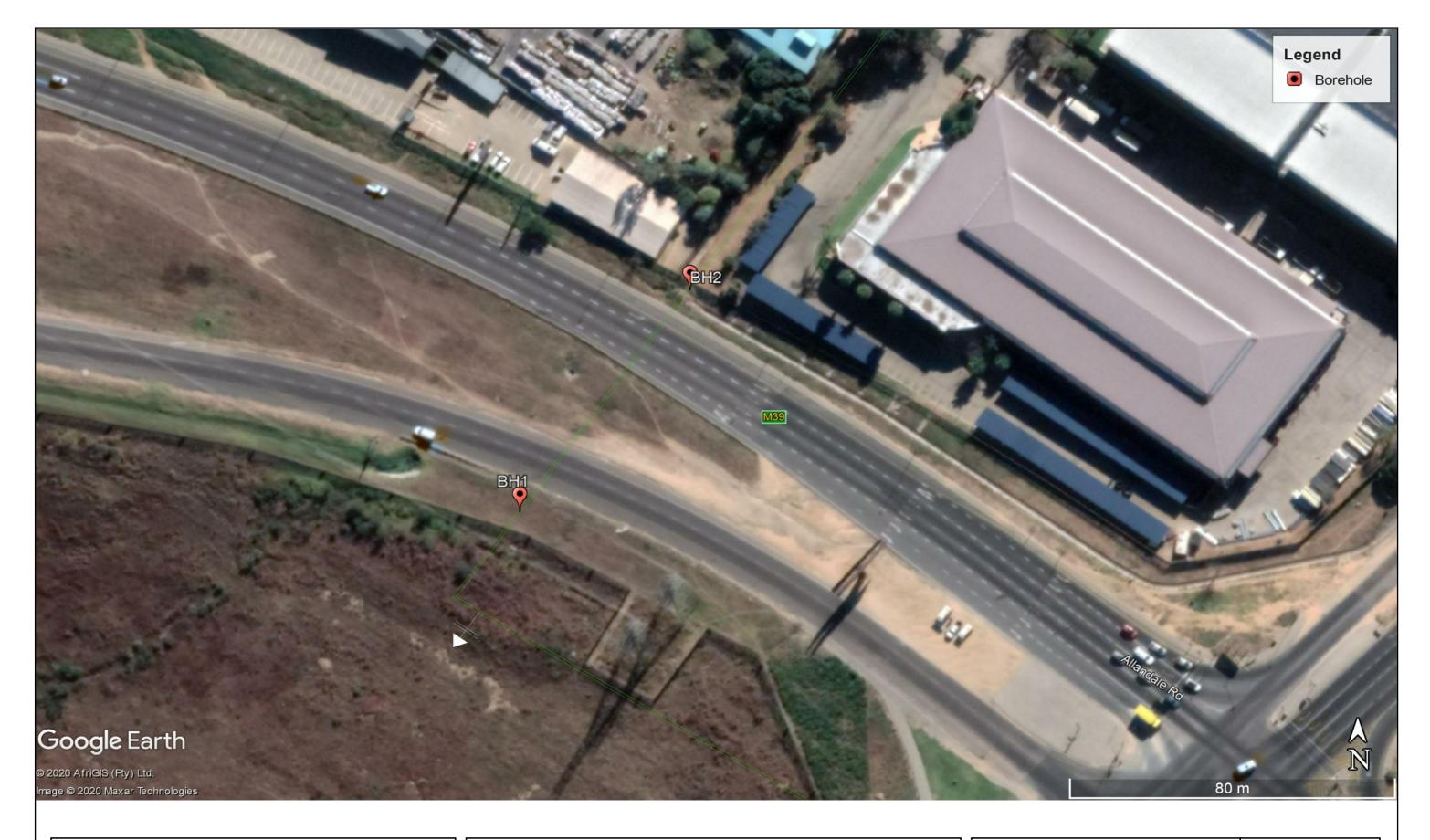
SITE PLAN INDICATING APPROXIMATE POSITIONS OF TEST PITS AND DPSH TESTS ZONE 1

SCALE: NOT TO SCALE

SITE PLAN INDICATING APPROXIMATE POSITIONS OF TEST PITS AND BOREHOLES ZONE 2

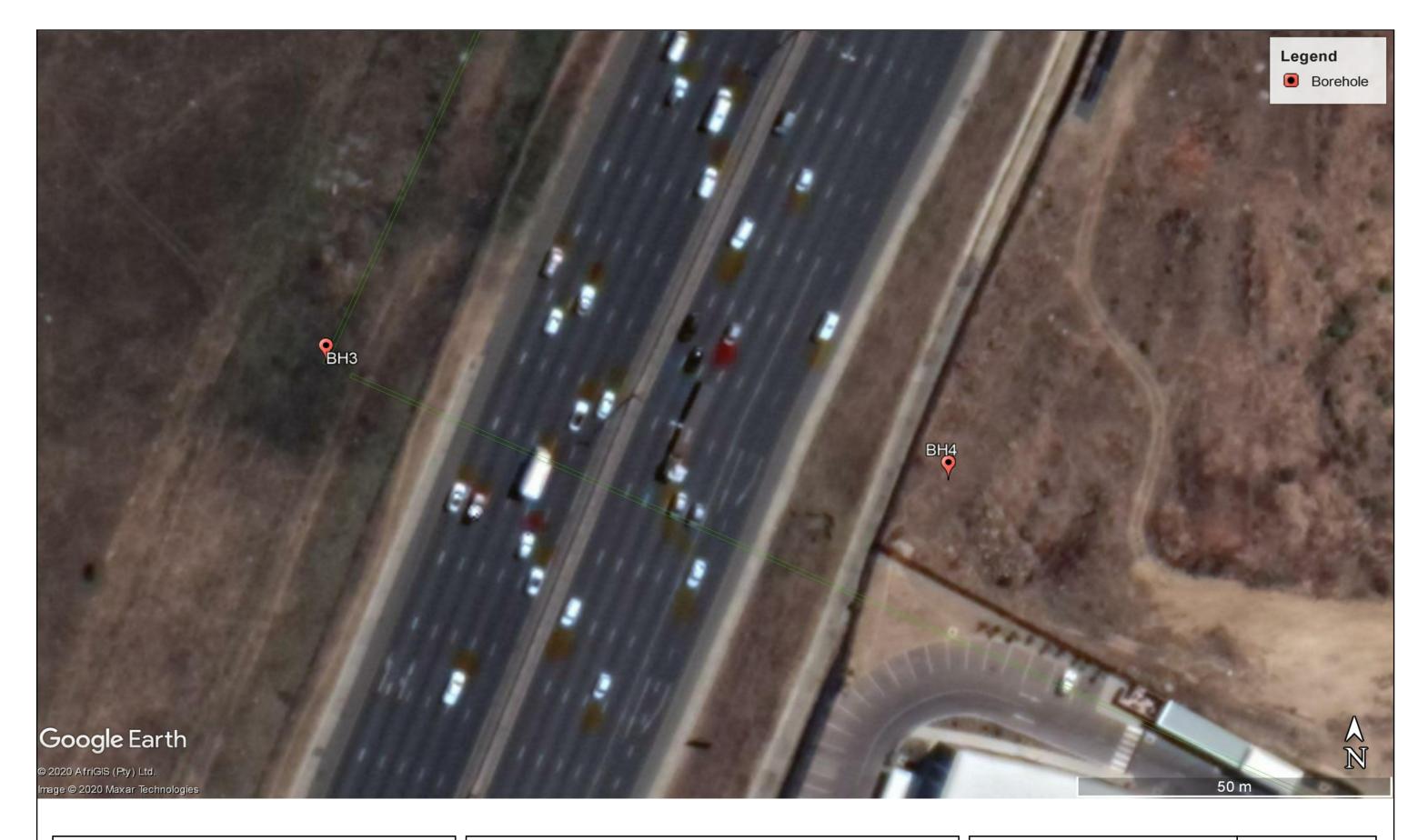
SCALE: NOT TO SCALE

SITE PLAN INDICATING APPROXIMATE POSITIONS OF TEST PITS AND BOREHOLES ZONE 3


SCALE: NOT TO SCALE

SITE PLAN INDICATING APPROXIMATE POSITIONS OF TEST PITS AND DPSH TESTS ZONE 4

SCALE: NOT TO SCALE



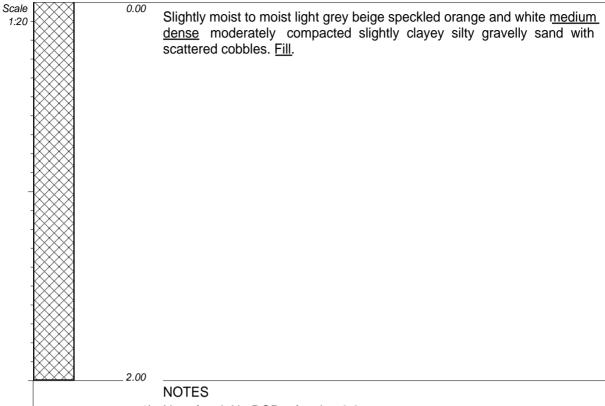
SITE PLAN INDICATING APPROXIMATE POSITIONS OF BOREHOLES ZONE 5

SCALE: NOT TO SCALE

DATE: DECEMBER 2020

SITE PLAN INDICATING APPROXIMATE POSITIONS OF BOREHOLES ZONE 6

SCALE: NOT TO SCALE


DATE: DECEMBER 2020

APPENDIX B: TEST PIT SOIL PROFILES

HOLE No: TP01 Sheet 1 of 1

JOB NUMBER: 20/91/TP

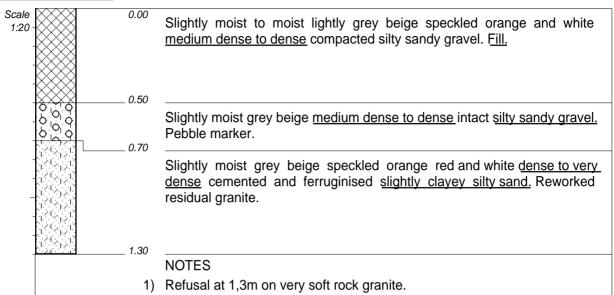
- 1) No refusal. No DCP refusal at 3,0m.
- 2) No evidence of water.
- 3) No sample.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020


 TYPE SET BY : Renee
 DATE : 25/01/2021 12:08

SETUP FILE : STANDARD.SET TEXT : ..wayHouseWaterUpgrade.txt

HOLE No: TP02 Sheet 1 of 1

JOB NUMBER: 20/91/TP

- 2) No evidence of water.
- 3) No sample.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: ELEVATION:

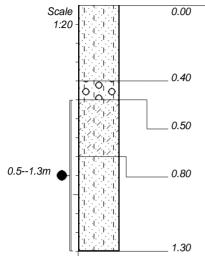
MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

PROFILED BY : Riaan / Warren

DATE : 10/12/2020

TYPE SET BY : Renee


DATE : 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP03 Sheet 1 of 1

JOB NUMBER: 20/91/TP

Slightly moist to moist light grey speckled off white loose open voided silty sand. Hillwash.

Slightly moist grey beige <u>medium dense to dense</u> intact <u>silty sandy gravel</u>. Pebble marker.

Slightly moist grey beige speckled orange red and white <u>medium dense</u> intact <u>slightly clayey silty sand</u>. Reworked residual granite.

Slightly moist red brown <u>dense becoming dense to very dense at depth</u> jointed <u>silty sand</u>. Residual granite.

NOTES

- 1) Refusal at 1,3m on very dense to very soft rock granite.
- 2) No evidence of water.
- 3) Disturbed sample taken at 0,5--1,3m.
- 4) Stable sidewalls.

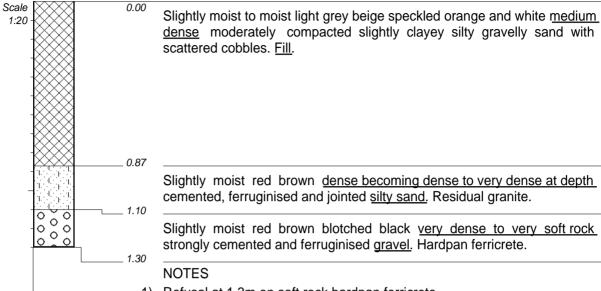
CONTRACTOR:

MACHINE: Hand Excavated

DRILLED BY: PROFILED BY: Riaan / Warren

TYPE SET BY : Renee SETUP FILE : STANDARD.SET INCLINATION:
DIAM:
DATE:

DATE: 10/12/2020 DATE: 25/01/2021 12:08


TEXT : ..wayHouseWaterUpgrade.txt

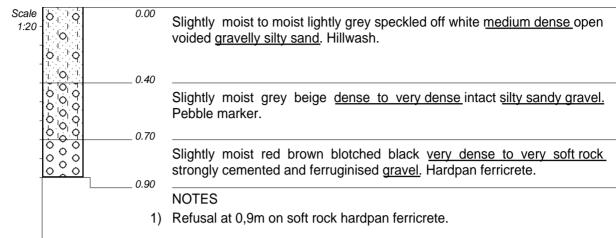
ELEVATION: X-COORD: Y-COORD:

HOLE No: TP04 Sheet 1 of 1

JOB NUMBER: 20/91/TP

- 1) Refusal at 1,3m on soft rock hardpan ferricrete.
- No evidence of water.
- 3) No sample.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: **ELEVATION:** MACHINE: Hand Excavated DIAM: X-COORD: Y-COORD: DRILLED BY: DATE:


PROFILED BY: Riaan / Warren DATE: 10/12/2020 TYPE SET BY: Renee DATE: 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT : ..wayHouseWaterUpgrade.txt

HOLE No: TP05 Sheet 1 of 1

JOB NUMBER: 20/91/TP

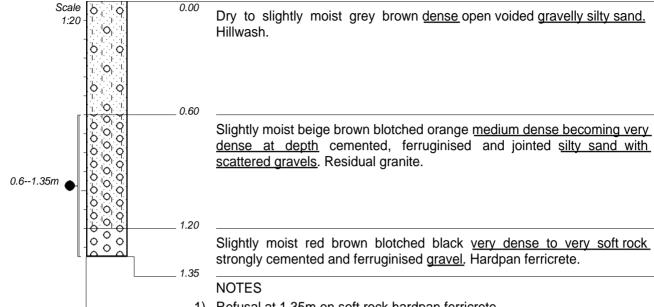
3) No sample.

4) Stable sidewalls.

2) No evidence of water.

CONTRACTOR: INCLINATION: ELEVATION: MACHINE: Hand Excavated DIAM: X-COORD: DRILLED BY: DATE: Y-COORD:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020


 TYPE SET BY : Renee
 DATE : 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP06 Sheet 1 of 1

JOB NUMBER: 20/91/TP

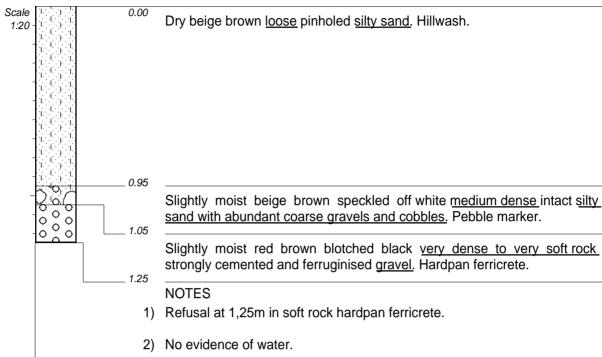
1) Refusal at 1,35m on soft rock hardpan ferricrete.

2) No evidence of water.

3) Disturbed sample taken at 0,6--1,35m.

4) Stable sidewalls.

CONTRACTOR: INCLINATION: **ELEVATION:** MACHINE: Hand Excavated DIAM: X-COORD: Y-COORD:


DRILLED BY: DATE: PROFILED BY: Riaan / Warren DATE: 10/12/2020

TYPE SET BY: Renee DATE: 25/01/2021 12:08 SETUP FILE: STANDARD.SET TEXT : ..wayHouseWaterUpgrade.txt

HOLE No: TP07 Sheet 1 of 1

JOB NUMBER: 20/91/TP

3) No sample.

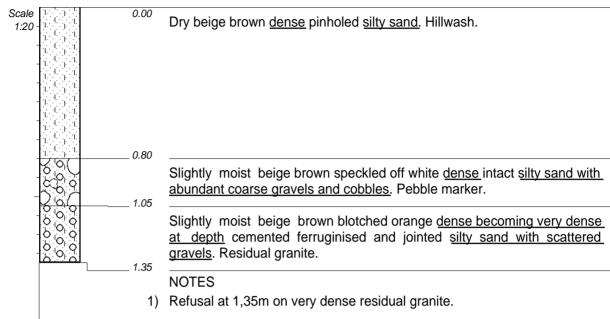
4) Stable sidewalls.

 CONTRACTOR:
 INCLINATION:
 ELEVATION:

 MACHINE: Hand Excavated
 DIAM:
 X-COORD:

 DRILLED BY:
 DATE:
 Y-COORD:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020


 TYPE SET BY : Renee
 DATE : 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP08 Sheet 1 of 1

JOB NUMBER: 20/91/TP

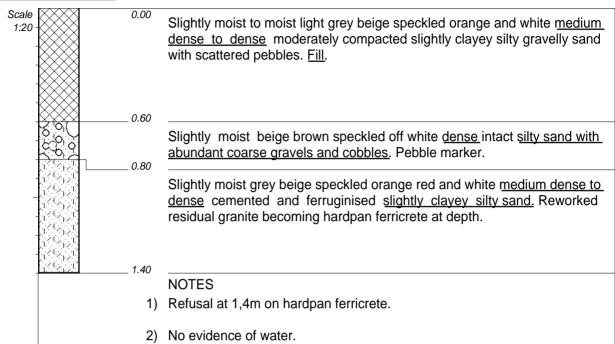
- 2) No evidence of water.
- 3) No sample.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020


 TYPE SET BY : Renee
 DATE : 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP09 Sheet 1 of 1

JOB NUMBER: 20/91/TP

CONTRACTOR: INCLINATION: ELEVATION:

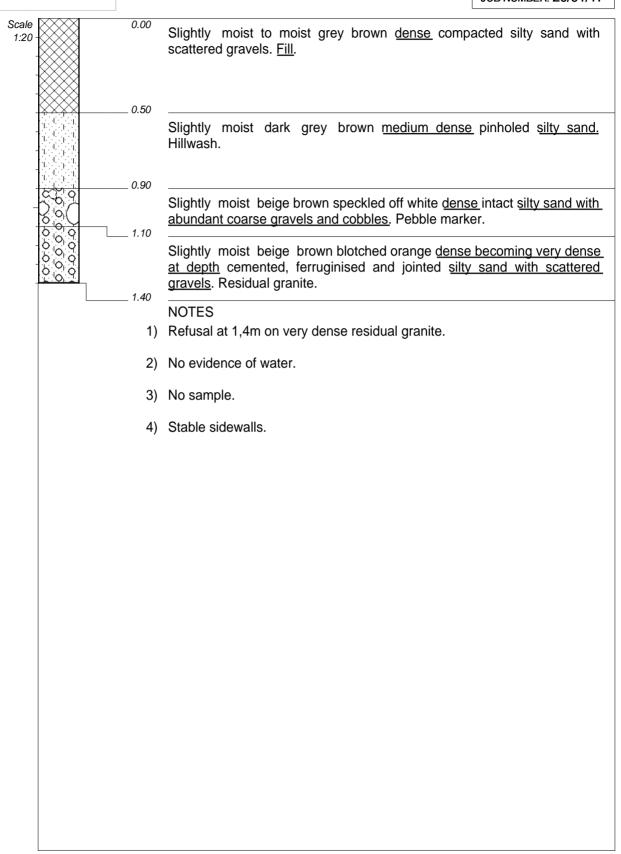
MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020

 TYPE SET BY : Renee
 DATE : 25/01/2021 12:08

3) No sample.


4) Stable sidewalls.

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP10 Sheet 1 of 1

JOB NUMBER: 20/91/TP

CONTRACTOR:

MACHINE: Hand Excavated

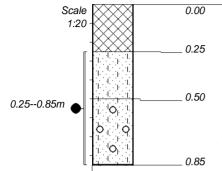
DRILLED BY:

DATE:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020

 TYPE SET BY : Renee
 DATE : 25/01/2021 12

 IVPE SET BY: Renee
 DATE: 25/01/2021 12:08


 SETUP FILE: STANDARD.SET
 TEXT: ..wayHouseWaterUpgrade.txt

ELEVATION: X-COORD: Y-COORD:

HOLE No: TP11 Sheet 1 of 1

JOB NUMBER: 20/91/TP

Slightly moist grey brown speckled white and red <u>medium dense to dense</u> layered slightly clayey silty sand with scattered gravel. <u>Fill.</u>

Slightly moist dark grey brown <u>medium dense</u> pinholed <u>silty sand.</u> Hillwash.

Slightly moist grey beige speckled orange and black <u>dense</u> ferruginised <u>gravelly silty sand</u>. Nodular ferricrete becoming hardpan ferricrete at base.

NOTES

- 1) Refusal at 0,85m on very soft rock hardpan ferricrete.
- 2) No evidence of water.
- 3) Disturbed sample taken at 0,25--0,85m.
- 4) Stable sidewalls.

CONTRACTOR:

MACHINE: Hand Excavated

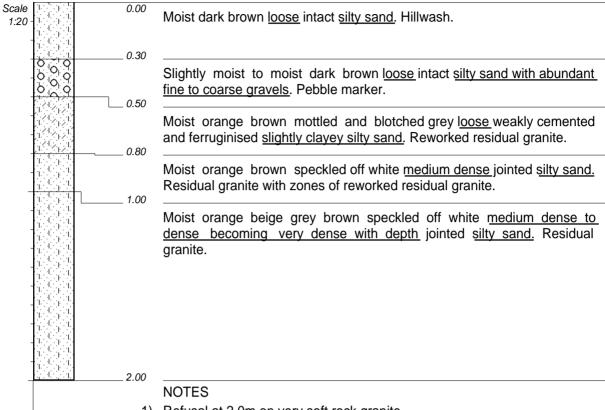
DRILLED BY:

PROFILED BY: Riaan / Warren

TYPE SET BY : Renee SETUP FILE : STANDARD.SET INCLINATION:
DIAM:
DATE:
DATE:10/12/20

DATE: 10/12/2020

DATE: 25/01/2021 12:08


DATE: 25/01/2021 12:08
TEXT: ..wayHouseWaterUpgrade.txt

ELEVATION: X-COORD: Y-COORD:

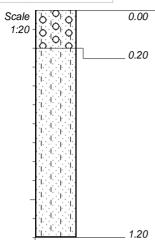
HOLE No: TP12 Sheet 1 of 1

JOB NUMBER: 20/91/TP

- 1) Refusal at 2,0m on very soft rock granite.
- 2) No evidence of water.
- No sample.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: **ELEVATION:** MACHINE: Hand Excavated DIAM: X-COORD: Y-COORD:

DRILLED BY: DATE: PROFILED BY: Riaan / Warren DATE: 10/12/2020


TYPE SET BY: Renee DATE: 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT : ..wayHouseWaterUpgrade.txt

HOLE No: TP13 Sheet 1 of 1

JOB NUMBER: 20/91/TP

Slightly moist to moist grey mottled and blotched orange brown loose intact silty sand with abundant gravels. Pebble marker.

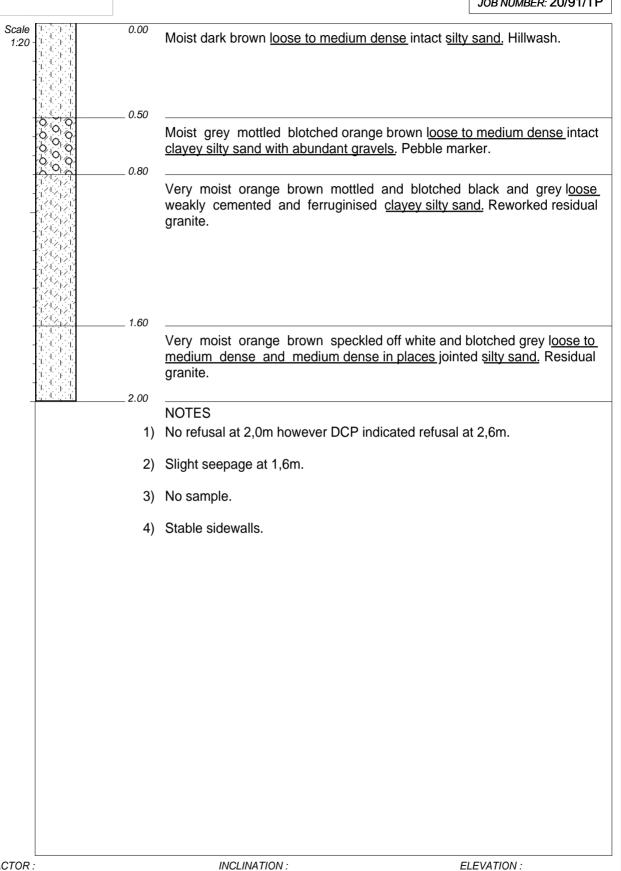
Moist orange brown mottled and blotched black and grey <u>dense</u> strongly cemented and ferruginised <u>silty sand</u>. Reworked residual granite.

NOTES

- 1) Refusal at 1,2m on very dense reworked residual granite.
- 2) No evidence of water.
- 3) No sample.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:


DRILLED BY: DATE: Y-COORD:

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP14 Sheet 1 of 1

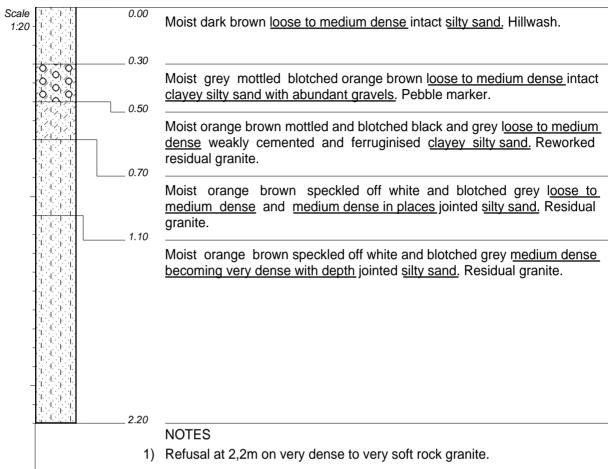
JOB NUMBER: 20/91/TP

CONTRACTOR: MACHINE: Hand Excavated DRILLED BY:

PROFILED BY: Riaan / Warren

TYPE SET BY: Renee SETUP FILE: STANDARD.SET DIAM: DATE:

DATE: 10/12/2020 DATE: 25/01/2021 12:08


TEXT : ..wayHouseWaterUpgrade.txt

X-COORD: Y-COORD:

HOLE No: TP15 Sheet 1 of 1

JOB NUMBER: 20/91/TP

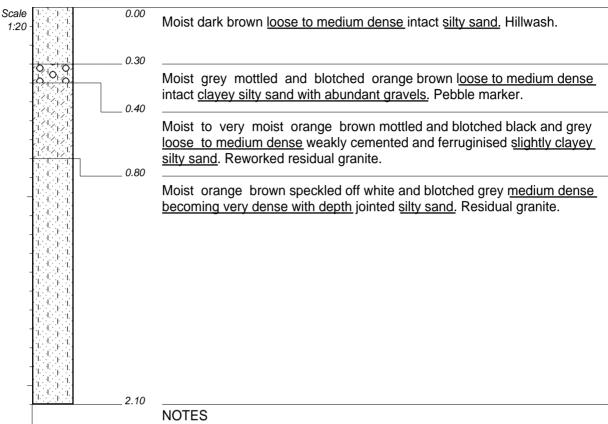
- 2) No evidence of water.
- 3) No sample.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020


 TYPE SET BY : Renee
 DATE : 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT: ...wayHouseWaterUpgrade.txt

HOLE No: TP16 Sheet 1 of 1

JOB NUMBER: 20/91/TP

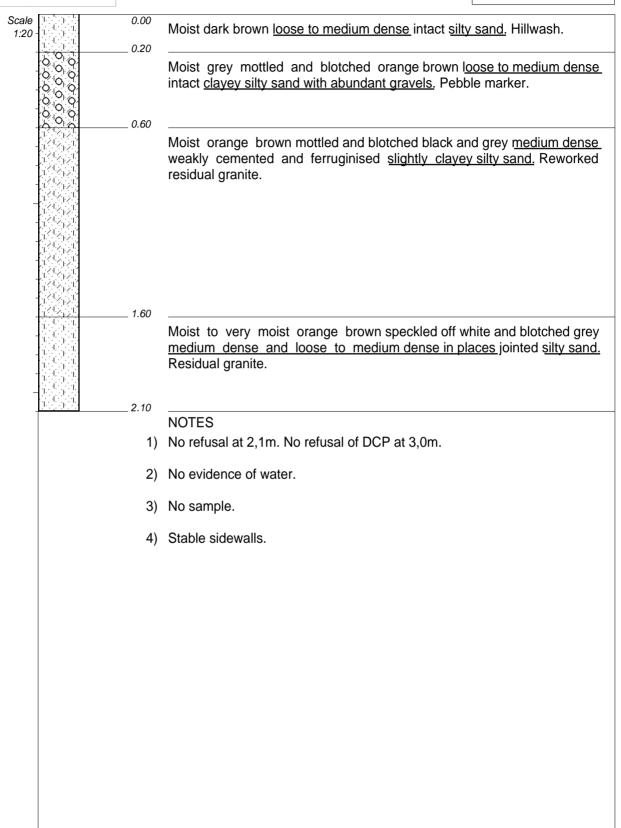
- 1) Refusal at 2,1m on very dense to very soft rock granite.
- 2) No evidence of water.
- 3) No sample.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020


 TYPE SET BY : Renee
 DATE : 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP17 Sheet 1 of 1

JOB NUMBER: 20/91/TP

CONTRACTOR:

MACHINE: Hand Excavated

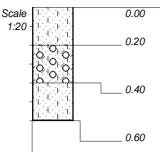
DRILLED BY:

PROFILED BY: Riaan / Warren

TYPE SET BY : Renee SETUP FILE : STANDARD.SET INCLINATION:
DIAM:
DATE:
DATE:10/12/202

DATE: 10/12/2020

DATE: 25/01/2021 12:08


TEXT: ..wayHouseWaterUpgrade.txt

ELEVATION: X-COORD: Y-COORD:

HOLE No: TP18
Sheet 1 of 1

JOB NUMBER: 20/91/TP

Moist dark brown loose to meidium dense intact silty sand. Hillwash.

Moist grey mottled and blotched orange brown loose to medium dense intact clayey silty sand with abundant gravels. Pebble marker.

Moist to very moist orange brown speckled off white and blotched grey dense cemented and ferruginised silty sand. Residual granite.

NOTES

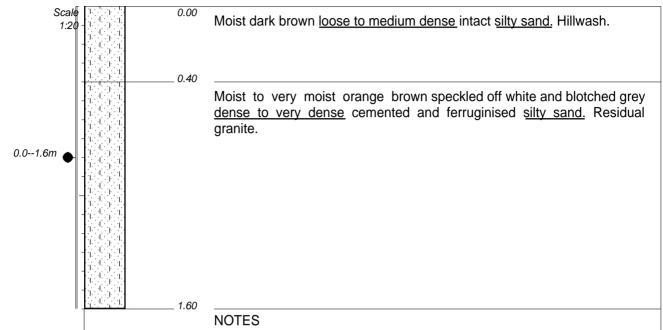
- 1) Refusal at 0,6m on soft rock granite.
- 2) No evidence of water.
- 3) No sample.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

DATE : 10/12/2020


TYPE SET BY : Renee #### DATE : 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT: ...wayHouseWaterUpgrade.txt

HOLE No: TP19 Sheet 1 of 1

JOB NUMBER: 20/91/TP

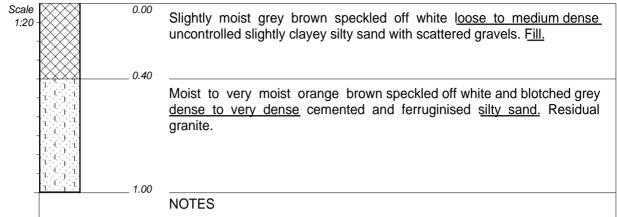
- 1) Refusal at 1,6m on very soft rock granite.
- 2) Moderate seepage at 1,6m.
- 3) Disturbed sample taken at 0,0--1,6m.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020


 TYPE SET BY : Renee
 DATE : 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP20 Sheet 1 of 1

JOB NUMBER: 20/91/TP

- 1) Refusal at 1,0m on very soft rock granite.
- 2) No evidence of water.
- 3) No sample.
- 4) Stable sidewalls.

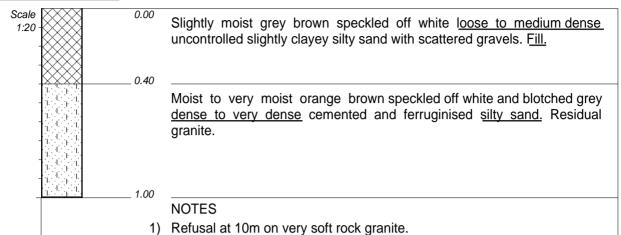
 CONTRACTOR:
 INCLINATION:
 ELEVATION:

 MACHINE: Hand Excavated
 DIAM:
 X-COORD:

 DRILLED BY:
 DATE:
 Y-COORD:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020

 TYPE SET BY : Renee
 DATE : 25/01/2021 12:08


SETUP FILE: STANDARD.SET

TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP21 Sheet 1 of 1

JOB NUMBER: 20/91/TP

2) No evidence of water.

3) No sample.

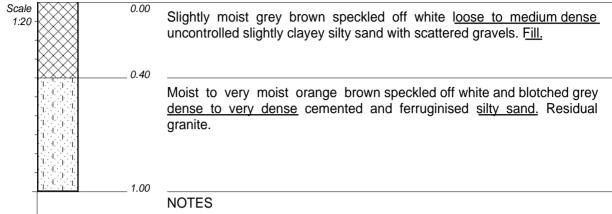
4) Stable sidewalls.

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

DRILLED BY:
PROFILED BY: Riaan / Warren


DATE:
DATE:
DATE: 10/12/2020

TYPE SET BY : Renee DATE : 25/01/2021 12:08
SETUP FILE : STANDARD.SET TEXT : ..wayHouseWaterUpgrade.txt

HOLE No: TP22 Sheet 1 of 1

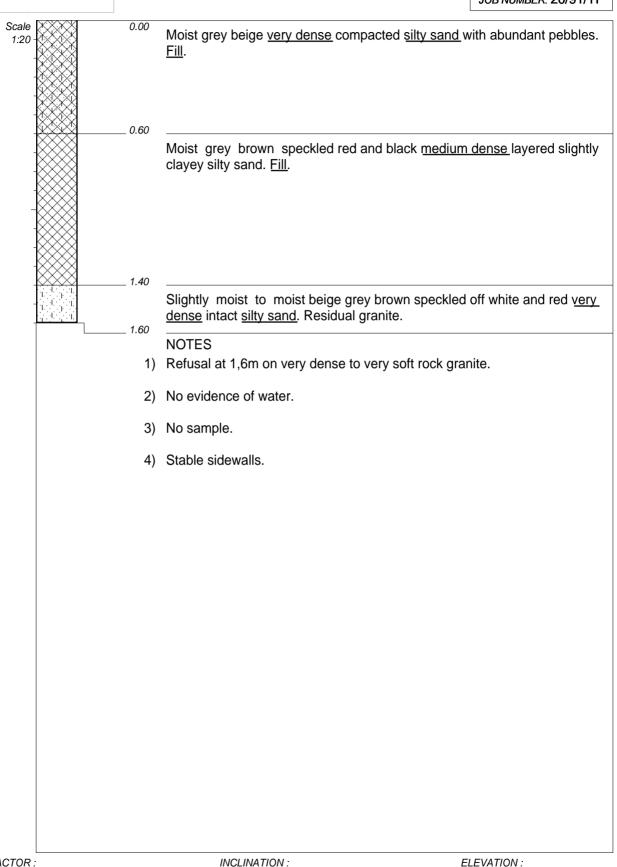
JOB NUMBER: 20/91/TP

- 1) Refusal at 1,0m on very soft rock granite.
- 2) No evidence of water.
- 3) No sample.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: ELEVATION: MACHINE: Hand Excavated DIAM: X-COORD: DRILLED BY: DATE: Y-COORD:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020

 TYPE SET BY : Renee
 DATE : 25/01/2021 12:08


SETUP FILE: STANDARD.SET

TEXT: ...wayHouseWaterUpgrade.txt

HOLE No: TP23
Sheet 1 of 1

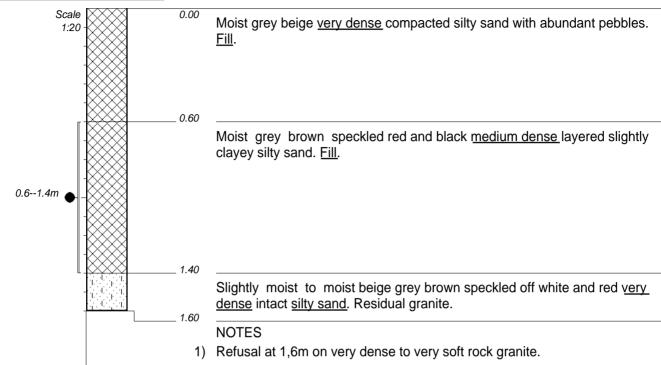
JOB NUMBER: 20/91/TP

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020


 TYPE SET BY : Renee
 DATE : 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP24 Sheet 1 of 1

JOB NUMBER: 20/91/TP

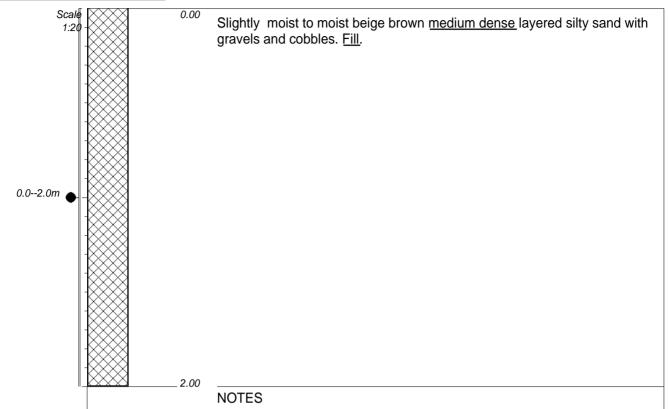
- 2) No evidence of water.
- 3) Disturbed sample taken at 0,6--1,4m.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020


 TYPE SET BY : Renee
 DATE : 25/01/2021 12:08

SETUP FILE : STANDARD.SET TEXT : ..wayHouseWaterUpgrade.txt

HOLE No: TP25 Sheet 1 of 1

JOB NUMBER: 20/91/TP

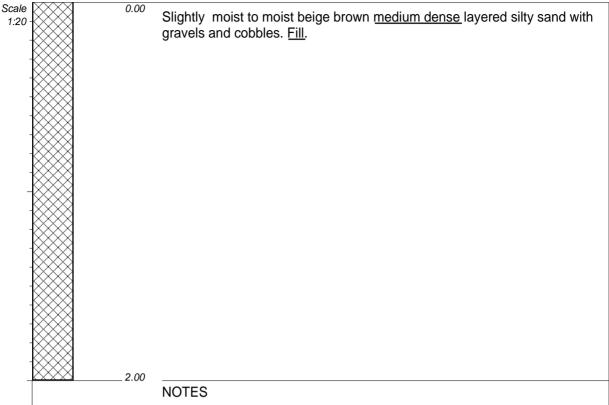
- 1) No refusal at 2,0m. DCP refusal at 2,5m.
- 2) No evidence of water.
- 3) Disturbed sample taken at 0,0--2,0m.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020


 TYPE SET BY : Renee
 DATE : 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP26 Sheet 1 of 1

JOB NUMBER: 20/91/TP

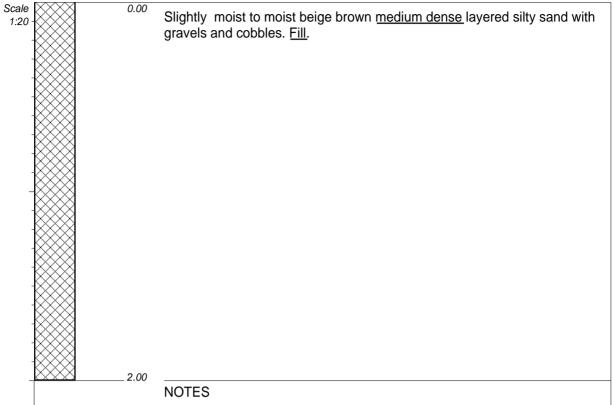
- 1) No refusal at 2,0m. DCP refusal at 2,5m.
- 2) No evidence of water.
- 3) No sample.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

 PROFILED BY: Riaan / Warren
 DATE: 10/12/2020


 TYPE SET BY: Renee
 DATE: 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP27 Sheet 1 of 1

JOB NUMBER: 20/91/TP

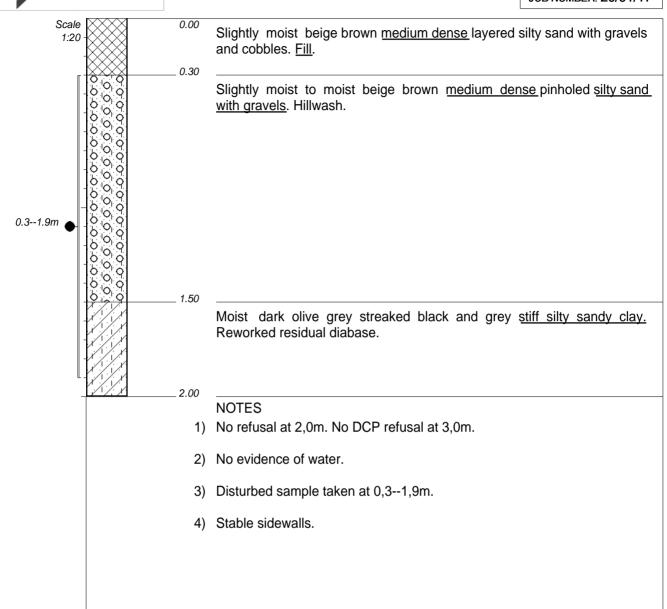
- 1) No refusal at 2,0m. DCP refusal at 2,5m.
- 2) No evidence of water.
- 3) No sample.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

PROFILED BY: Riaan / Warren DATE: 10/12/2020


TYPE SET BY: Renee DATE: 25/01/2021 12:08

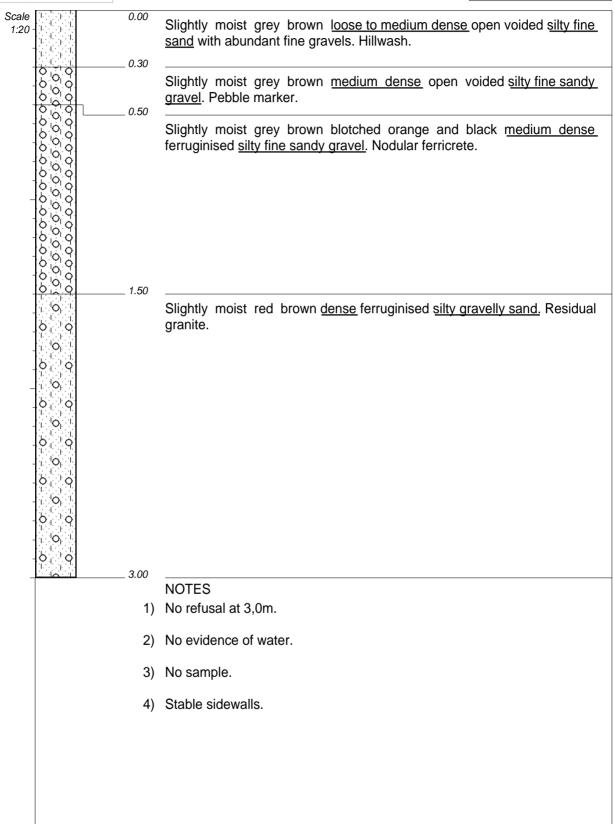
SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP28 Sheet 1 of 1

JOB NUMBER: 20/91/TP

CONTRACTOR: INCLINATION: ELEVATION: MACHINE: Hand Excavated DIAM: X-COORD: DRILLED BY: DATE: Y-COORD:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020


 TYPE SET BY : Renee
 DATE : 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP32 Sheet 1 of 1

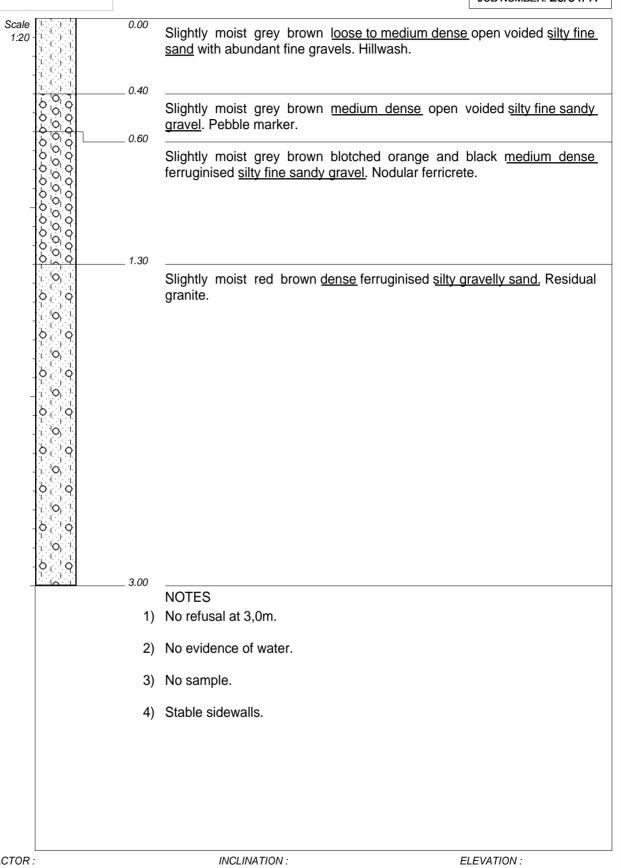
JOB NUMBER: 20/91/TP

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

DRILLED BY: PROFILED BY: Riaan / Warren


TYPE SET BY: Renee DATE: 25/01/2021 12:08
SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

DATE: DATE:10/12/2020

HOLE No: TP33 Sheet 1 of 1

JOB NUMBER: 20/91/TP

CONTRACTOR: MACHINE: Hand Excavated DIAM: X-COORD: Y-COORD:

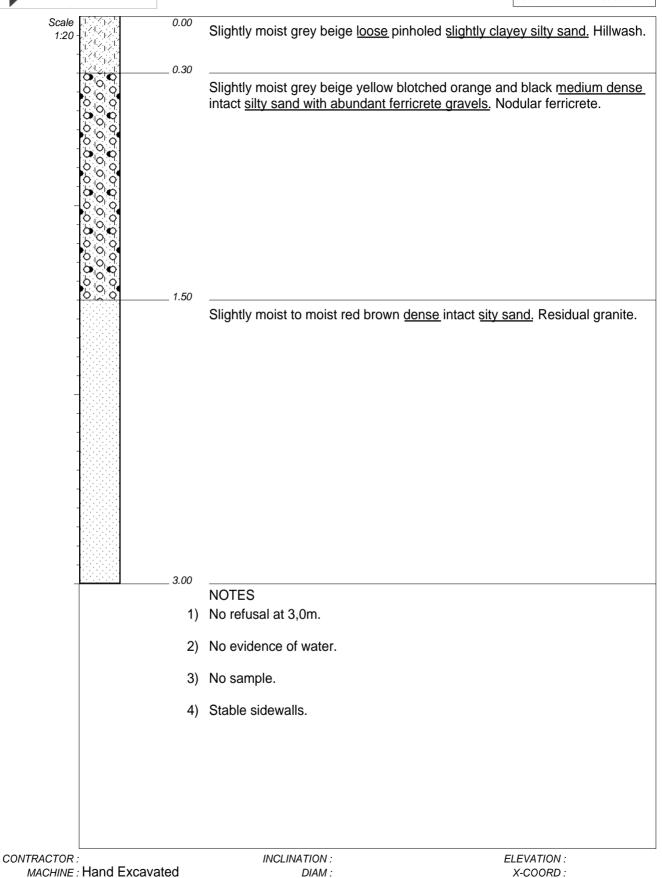
DRILLED BY: DATE: PROFILED BY: Riaan / Warren DATE: 10/12/2020

TYPE SET BY: Renee DATE: 25/01/2021 12:08 SETUP FILE: STANDARD.SET

TEXT : ..wayHouseWaterUpgrade.txt

DRILLED BY:

TYPE SET BY: Renee


PROFILED BY: Riaan / Warren

SETUP FILE: STANDARD.SET

Zutari Consulting Engineers Halfway House Water Upgrade

HOLE No: TP34 Sheet 1 of 1

JOB NUMBER: 20/91/TP

DATE:

DATE: 10/12/2020

DATE: 25/01/2021 12:08

TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP34

Y-COORD:

DRILLED BY:

TYPE SET BY: Renee

PROFILED BY: Riaan / Warren

SETUP FILE: STANDARD.SET

Zutari Consulting Engineers Halfway House Water Upgrade

HOLE No: TP35 Sheet 1 of 1

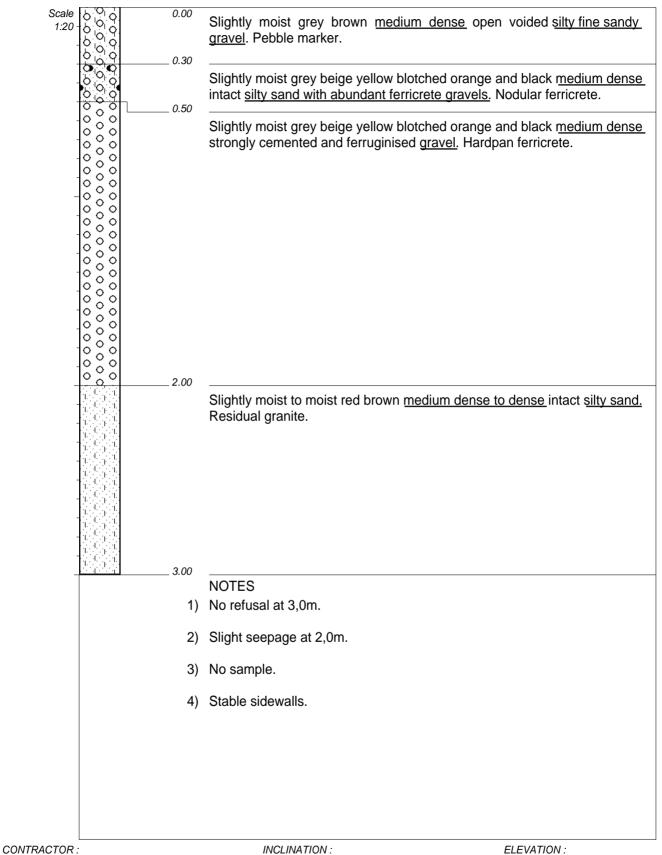
		JOB NUMBER: 20/91/1
Scale 0.00 1:20	Hard rock granite.	
0.01	NOTES	
1)	Test pit not excavated due to granite bedrock at su	rface.

DATE:

DATE: 10/12/2020

DATE: 25/01/2021 12:08

TEXT:..wayHouseWaterUpgrade.txt


HOLE No: TP35

Y-COORD:

HOLE No: TP36 Sheet 1 of 1

JOB NUMBER: 20/91/TP

DIAM:

DATE:

DATE: 10/12/2020

DATE: 25/01/2021 12:08

TEXT : ..wayHouseWaterUpgrade.txt

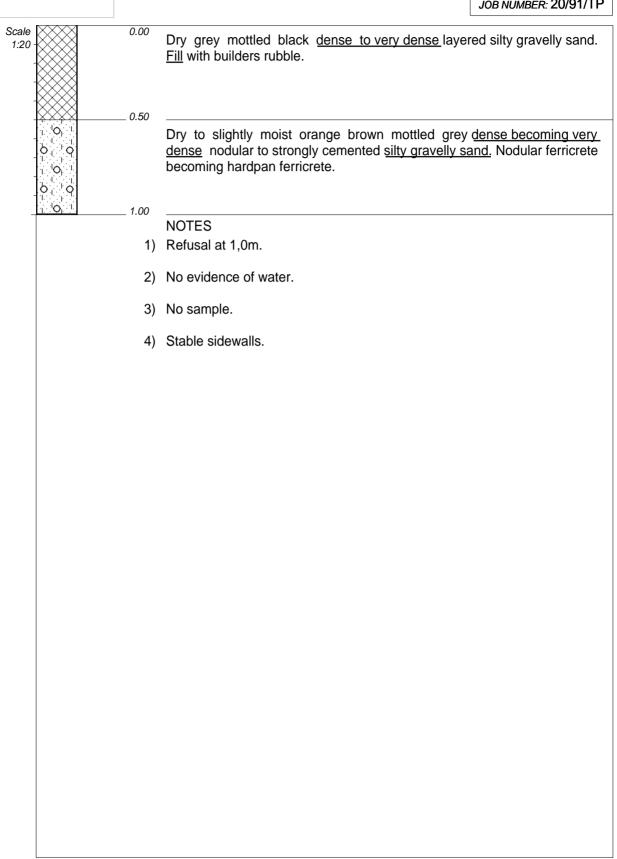
MACHINE: Hand Excavated

PROFILED BY: Riaan / Warren

SETUP FILE: STANDARD.SET

DRILLED BY:

TYPE SET BY: Renee

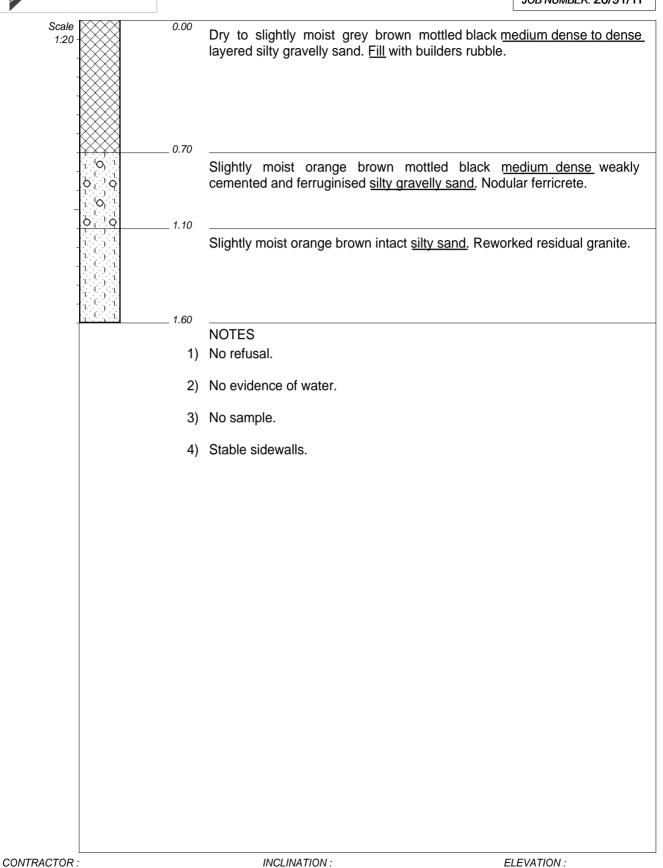

HOLE No: TP36

X-COORD: Y-COORD:

HOLE No: TP37 Sheet 1 of 1

JOB NUMBER: 20/91/TP

CONTRACTOR: INCLINATION: **ELEVATION:** MACHINE: Hand Excavated DIAM: X-COORD: Y-COORD: DRILLED BY: DATE:


PROFILED BY: Riaan / Warren DATE: 10/12/2020 TYPE SET BY: Renee DATE: 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP38 Sheet 1 of 1

JOB NUMBER: 20/91/TP

DRILLED BY:
PROFILED BY: Riaan / Warren

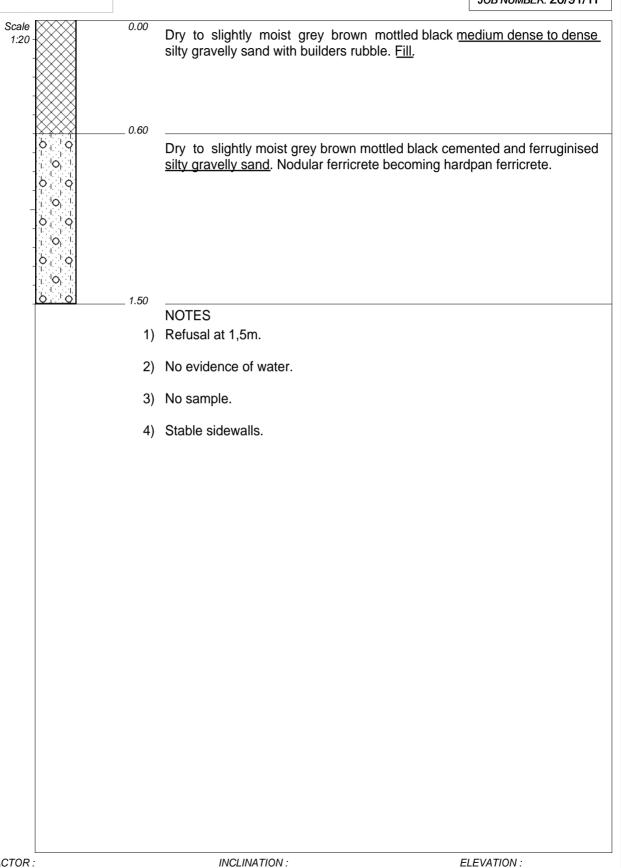
DATE:
DATE:
DATE: 10/12/2020

TYPE SET BY : Renee DATE : 25/01/2021 12:08

MACHINE: Hand Excavated

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP38


X-COORD: Y-COORD:

DIAM:

HOLE No: TP39 Sheet 1 of 1

JOB NUMBER: 20/91/TP

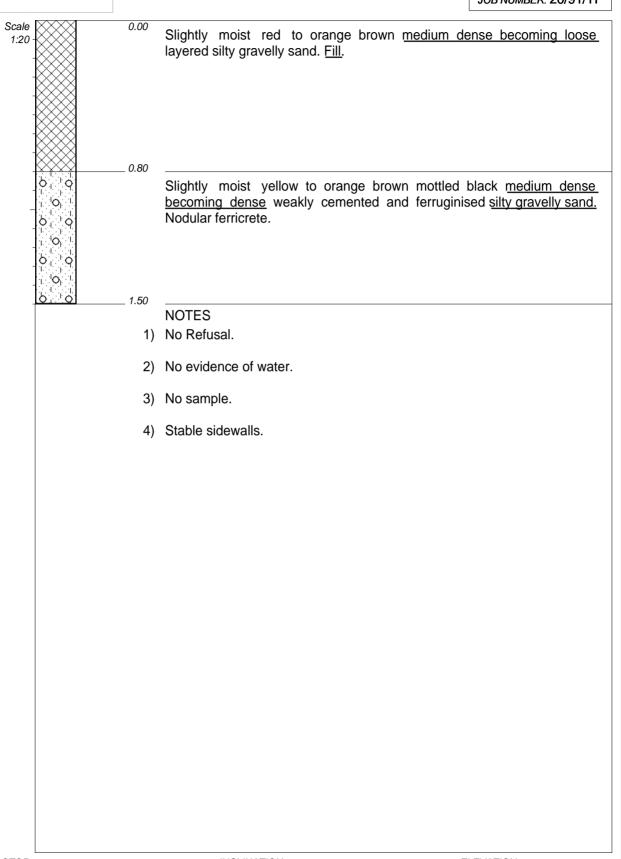
CONTRACTOR: INCLINATION:

MACHINE: Hand Excavated DIAM:

DRILLED BY: DATE:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020

 TYPE SET BY : Renee
 DATE : 25/01/2021 12:08


SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

X-COORD : Y-COORD :

HOLE No: TP40 Sheet 1 of 1

JOB NUMBER: 20/91/TP

CONTRACTOR: MACHINE: Hand Excavated

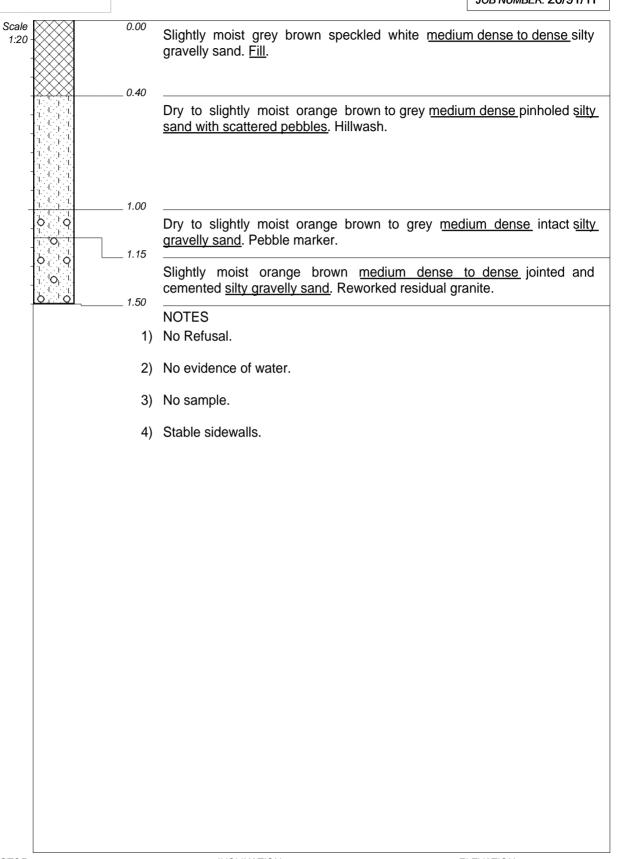
DRILLED BY :

PROFILED BY: Riaan / Warren
TYPE SET BY: Renee

SETUP FILE : STANDARD.SET

INCLINATION : DIAM :

DATE : DATE : 10/12/2020


DATE: 25/01/2021 12:08
TEXT: ..wayHouseWaterUpgrade.txt

ELEVATION: X-COORD: Y-COORD:

HOLE No: TP44 Sheet 1 of 1

JOB NUMBER: 20/91/TP

CONTRACTOR: MACHINE: Hand Excavated

DRILLED BY:

PROFILED BY: Riaan / Warren

SETUP FILE: STANDARD.SET

TYPE SET BY: Renee

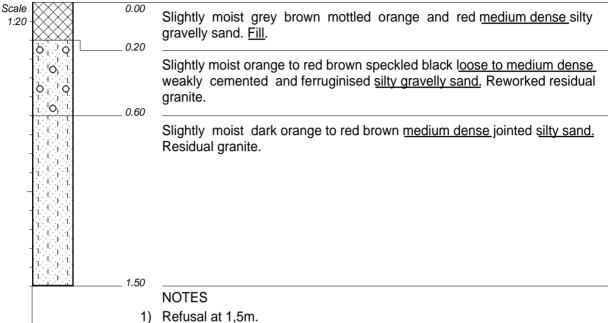
INCLINATION:

DIAM: DATE:

DATE: 10/12/2020

DATE: 25/01/2021 12:08

TEXT : ..wayHouseWaterUpgrade.txt


ELEVATION: X-COORD:

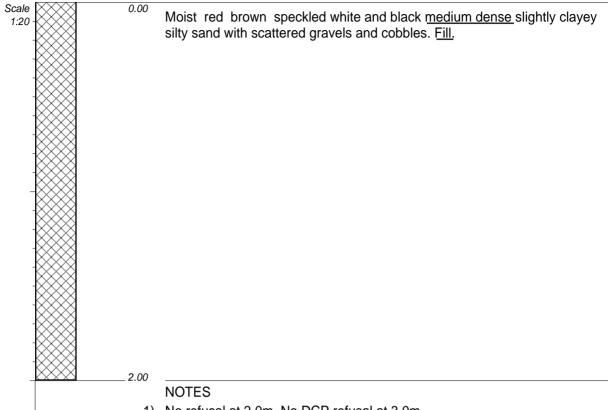
Y-COORD:

HOLE No: TP45 Sheet 1 of 1

JOB NUMBER: 20/91/TP

- 2) No evidence of water.
- 3) No sample.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: **ELEVATION:** MACHINE: Hand Excavated DIAM: X-COORD: Y-COORD: DRILLED BY: DATE:


PROFILED BY: Riaan / Warren DATE: 10/12/2020 TYPE SET BY: Renee DATE: 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT : ..wayHouseWaterUpgrade.txt

HOLE No: TP46 Sheet 1 of 1

JOB NUMBER: 20/91/TP

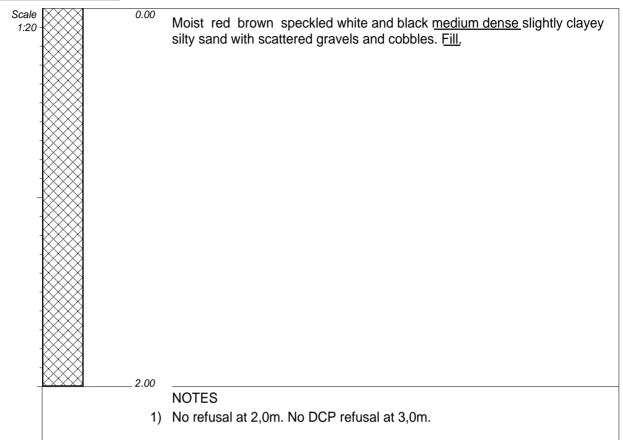
- 1) No refusal at 2,0m. No DCP refusal at 3,0m.
- 2) No evidence of water.
- 3) No sample.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

PROFILED BY : Riaan / Warren | DATE : 10/12/2020 |


TYPE SET BY : Renee | DATE : 25/01/2021 | 12:08

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP47 Sheet 1 of 1

JOB NUMBER: 20/91/TP

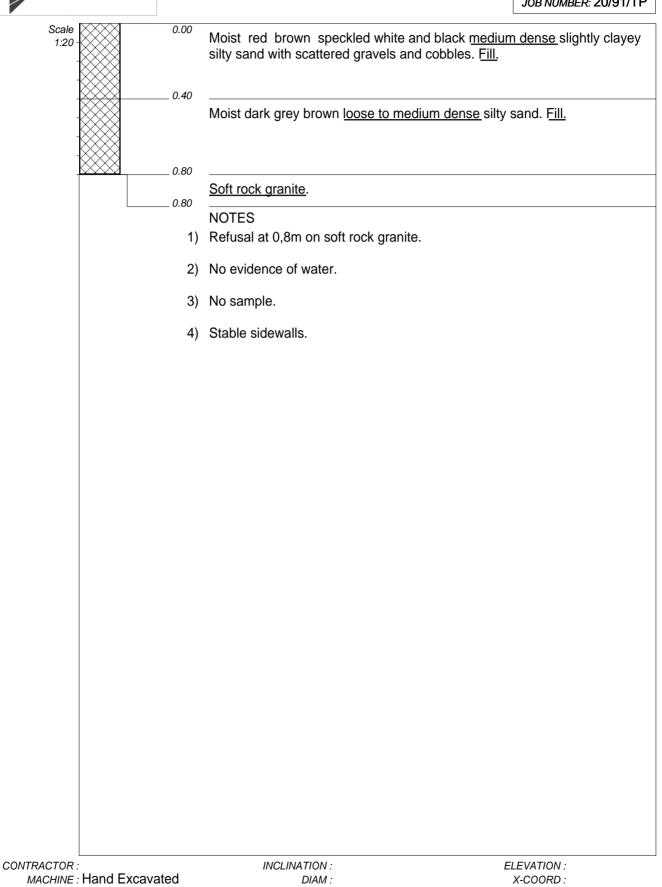
- 2) No evidence of water.
- 3) No sample.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

 PROFILED BY: Riaan / Warren
 DATE: 10/12/2020


 TYPE SET BY: Renee
 DATE: 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP48 Sheet 1 of 1

JOB NUMBER: 20/91/TP

TYPE SET BY: Renee DATE: 25/01/2021 12:08 SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

DRILLED BY:

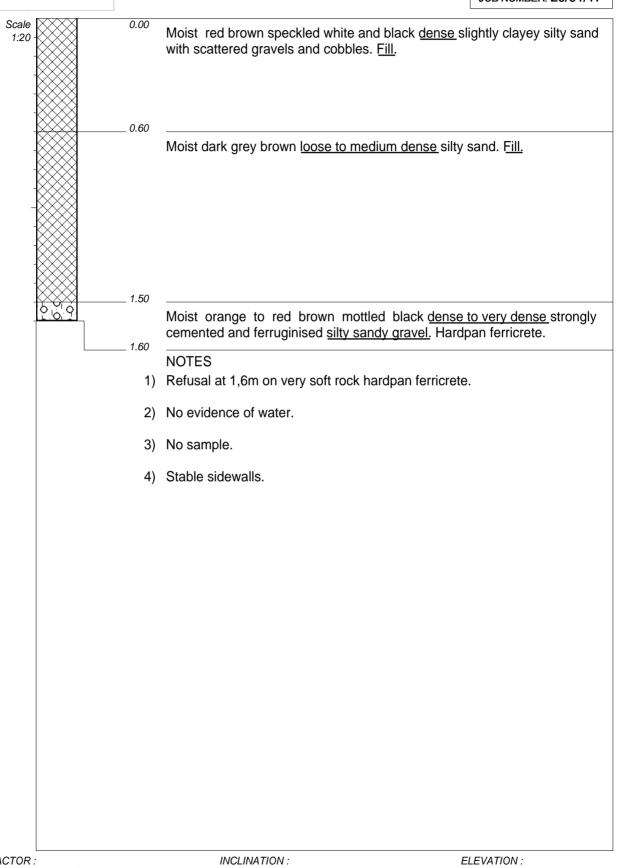
PROFILED BY: Riaan / Warren

dotPLOT 7021 PBpH67

HOLE No: TP48

X-COORD: Y-COORD:

DIAM:


DATE:

DATE: 10/12/2020

HOLE No: TP49 Sheet 1 of 1

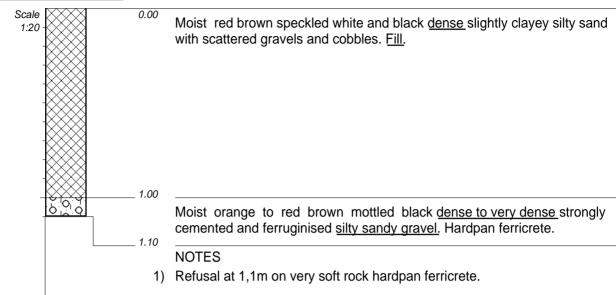
JOB NUMBER: 20/91/TP

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

DRILLED BY:
PROFILED BY: Riaan / Warren


DATE: 10/12/2020

TYPE SET BY : Renee DATE : 25/01/2021 12:08
SETUP FILE : STANDARD.SET TEXT : ..wayHouseWaterUpgrade.txt

HOLE No: TP50 Sheet 1 of 1

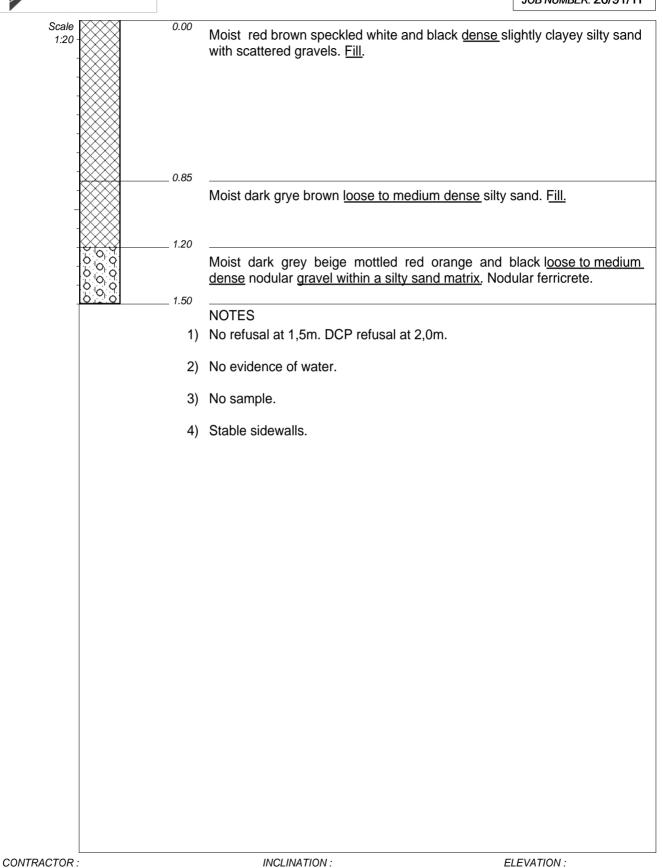
JOB NUMBER: 20/91/TP

- 2) No evidence of water.
- 3) No sample.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:


SETUP FILE: STANDARD.SET

TEXT: ...wayHouseWaterUpgrade.txt

HOLE No: TP51 Sheet 1 of 1

JOB NUMBER: 20/91/TP

PROFILED BY: Riaan / Warren DATE: 10/12/2020 TYPE SET BY: Renee DATE: 25/01/2021 12:08

MACHINE: Hand Excavated

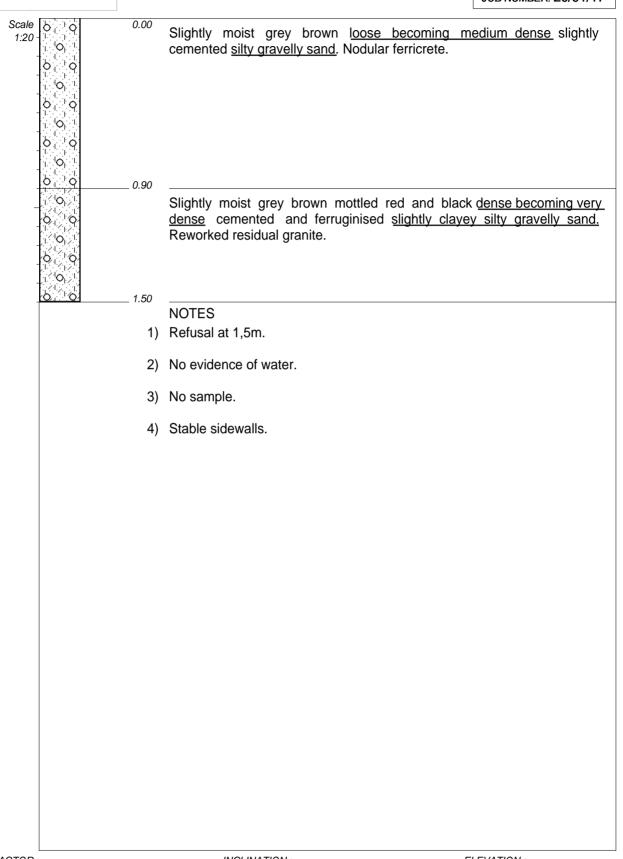
DRILLED BY:

SETUP FILE: STANDARD.SET

TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP51

X-COORD: Y-COORD:


DIAM:

DATE:

HOLE No: TP52 Sheet 1 of 1

JOB NUMBER: 20/91/TP

CONTRACTOR:

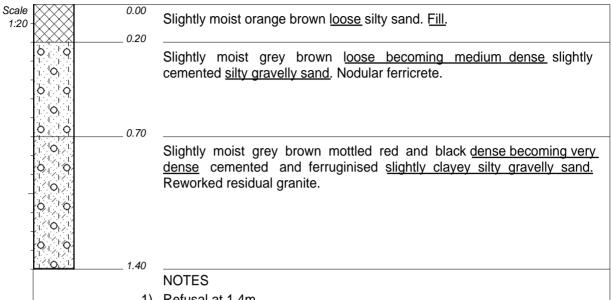
MACHINE: Hand Excavated

DRILLED BY: PROFILED BY: Riaan / Warren

TYPE SET BY : Renee SETUP FILE : STANDARD.SET INCLINATION:
DIAM:
DATE:

DATE: 10/12/2020

DATE: 25/01/2021 12:08

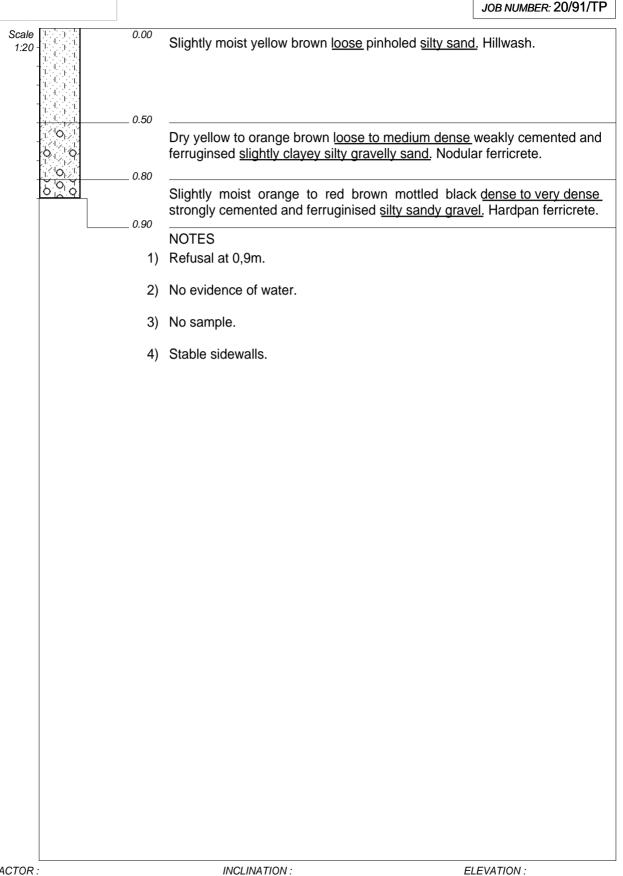

TEXT: ..wayHouseWaterUpgrade.txt

ELEVATION: X-COORD: Y-COORD:

HOLE No: TP53 Sheet 1 of 1

JOB NUMBER: 20/91/TP

- 1) Refusal at 1,4m.
- 2) No evidence of water.
- 3) No sample.
- 4) Stable sidewalls.


CONTRACTOR: INCLINATION: **ELEVATION:** MACHINE: Hand Excavated DIAM: X-COORD: DRILLED BY: Y-COORD: DATE:

PROFILED BY: Riaan / Warren DATE: 10/12/2020 TYPE SET BY: Renee DATE: 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP54 Sheet 1 of 1

CONTRACTOR: INCLINATION: MACHINE: Hand Excavated DIAM:

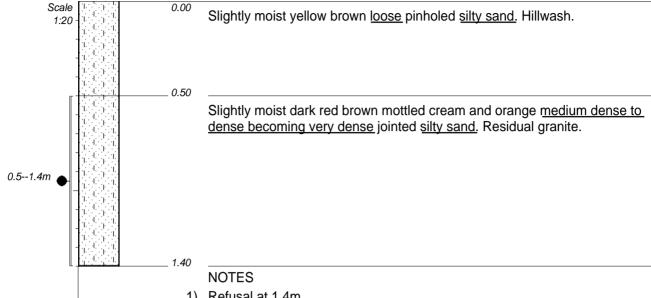
DRILLED BY: PROFILED BY: Riaan / Warren

TYPE SET BY: Renee

SETUP FILE: STANDARD.SET

DATE:

DATE: 10/12/2020 DATE: 25/01/2021 12:08


TEXT: ..wayHouseWaterUpgrade.txt

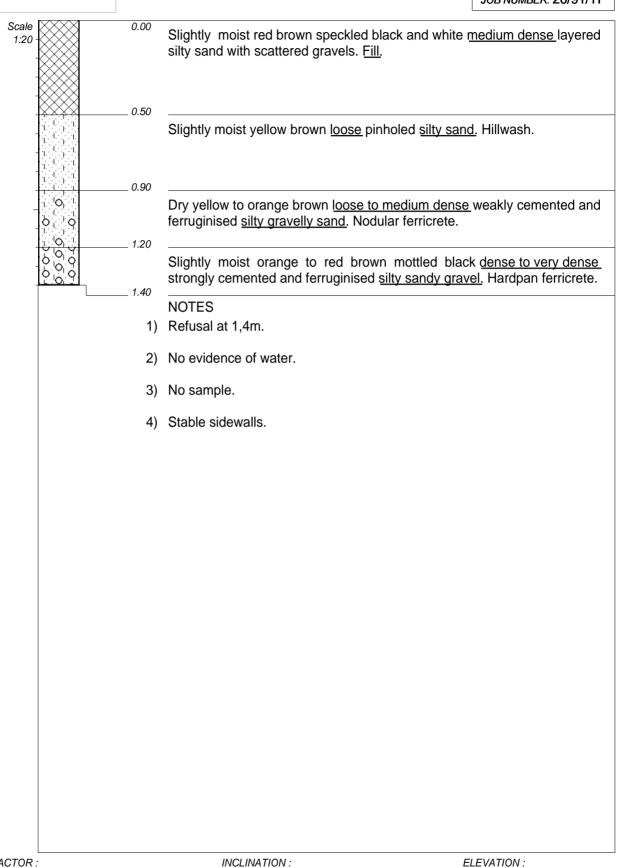
X-COORD: Y-COORD:

HOLE No: TP55 Sheet 1 of 1

JOB NUMBER: 20/91/TP

- 1) Refusal at 1,4m.
- 2) No evidence of water.
- 3) Disturbed sample taken at 0,5--1,4m.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: **ELEVATION:** MACHINE: Hand Excavated DIAM: X-COORD: Y-COORD: DRILLED BY: DATE:


PROFILED BY: Riaan / Warren DATE: 10/12/2020 TYPE SET BY: Renee DATE: 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP56 Sheet 1 of 1

JOB NUMBER: 20/91/TP

CONTRACTOR:

MACHINE: Hand Excavated

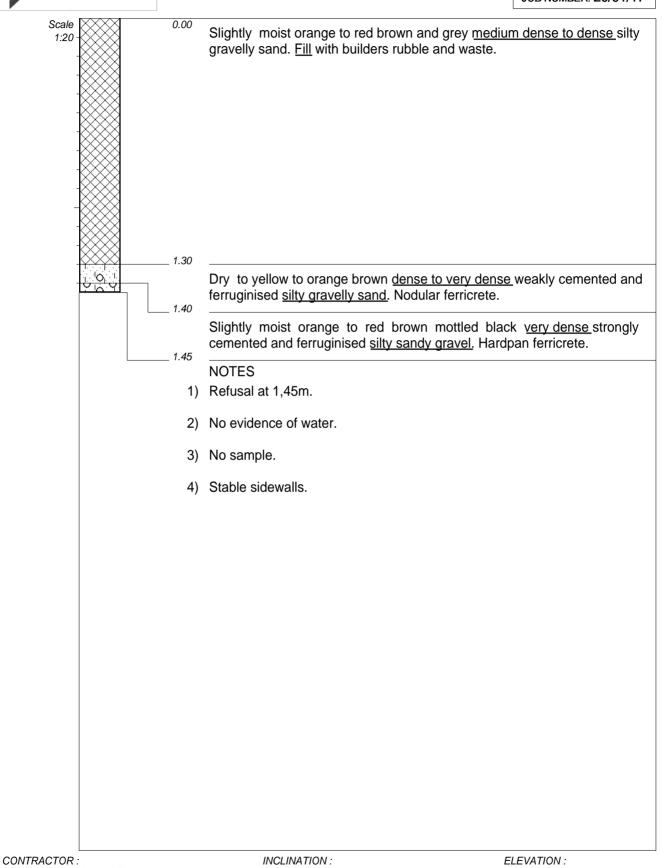
DRILLED BY: PROFILED BY: Riaan / Warren

TYPE SET BY : Renee SETUP FILE : STANDARD.SET INCLINATION : DIAM : DATE :

DATE: 10/12/2020

DATE: 25/01/2021 12:08

TEXT: ..wayHouseWaterUpgrade.txt


HOLE No: TP56

X-COORD: Y-COORD:

HOLE No: TP57 Sheet 1 of 1

JOB NUMBER: 20/91/TP

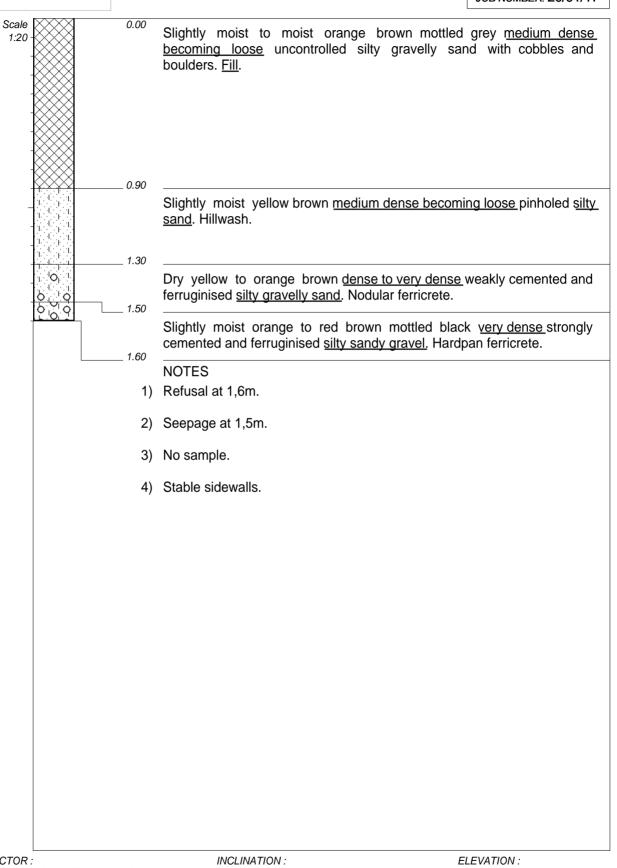
MACHINE: Hand Excavated

DRILLED BY: PROFILED BY: Riaan / Warren

TYPE SET BY : Renee SETUP FILE : STANDARD.SET INCLINATION:
DIAM:
DATE:
DATE:10/12/2020

DATE: 10/12/2020

DATE: 25/01/2021 12:08


DATE: 25/01/2021 12:08
TEXT: ..wayHouseWaterUpgrade.txt

:LEVATION : :X-COORD : :Y-COORD :

HOLE No: TP58 Sheet 1 of 1

JOB NUMBER: 20/91/TP

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

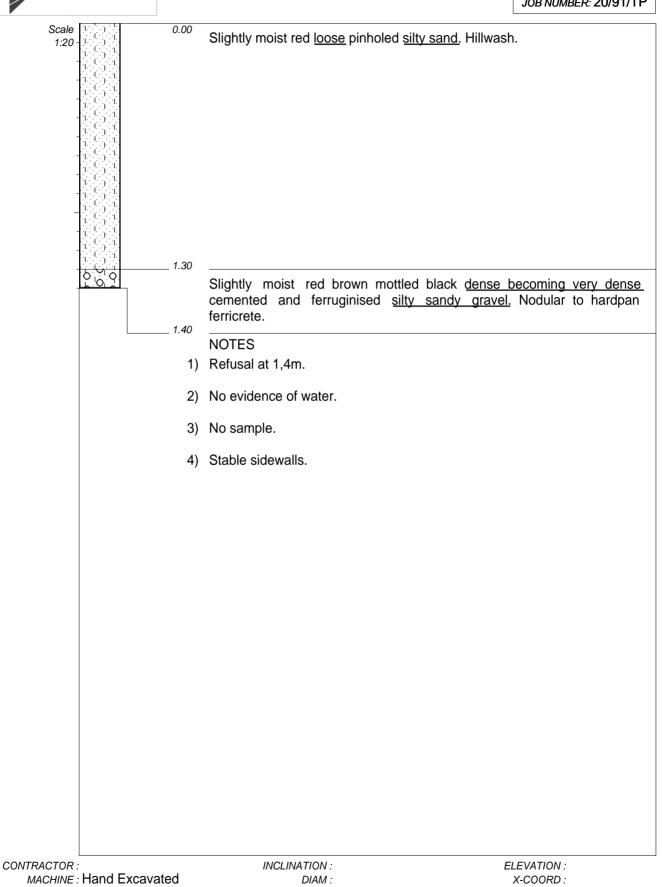
PROFILED BY: Riaan / Warren

DATE: 10/12/2020

TYPE SET BY: Renee DATE: 25/01/2021 12:08
SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

5/01/2021 12:08 HOLE No: TP58

DRILLED BY:


TYPE SET BY: Renee

PROFILED BY: Riaan / Warren

Zutari Consulting Engineers Halfway House Water Upgrade

HOLE No: TP59 Sheet 1 of 1

JOB NUMBER: 20/91/TP

SETUP FILE: STANDARD.SET TEXT:..wayHouseWaterUpgrade.txt D07A Crossman Pape and Associates unication in Action cc t/a Software Africa ~ www.softwareafrica.co.za

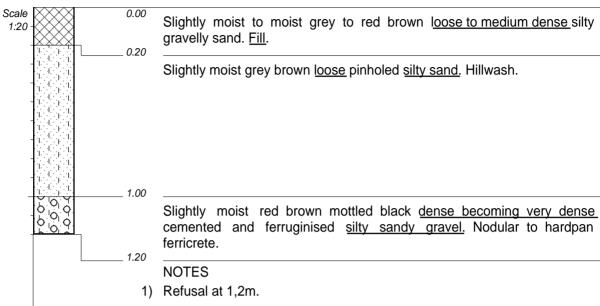
DIAM:

DATE:

DATE: 10/12/2020

DATE: 25/01/2021 12:08

dotPLOT 7021 PBpH67


HOLE No: TP59

X-COORD: Y-COORD:

HOLE No: TP60 Sheet 1 of 1

JOB NUMBER: 20/91/TP

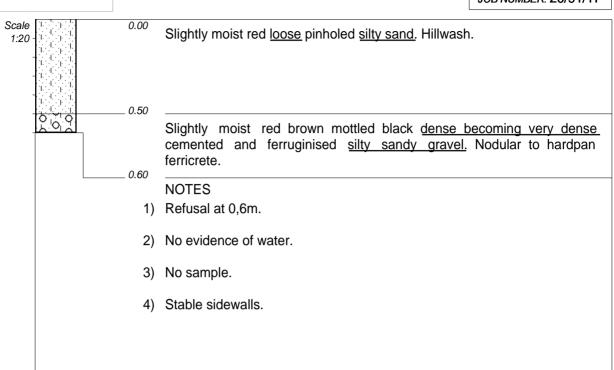
- 2) No evidence of water.
- 3) No sample.
- 4) Stable sidewalls.

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: Hand Excavated DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020


 TYPE SET BY : Renee
 DATE : 25/01/2021 12:08

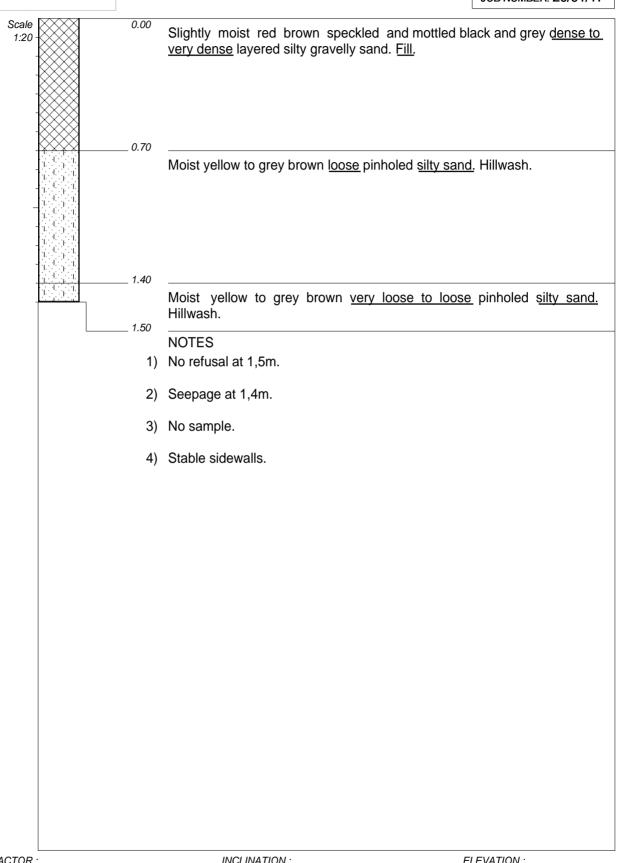
SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP61 Sheet 1 of 1

JOB NUMBER: 20/91/TP

CONTRACTOR: INCLINATION: ELEVATION: MACHINE: Hand Excavated DIAM: X-COORD: DRILLED BY: DATE: Y-COORD:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020


 TYPE SET BY : Renee
 DATE : 25/01/2021 12:08

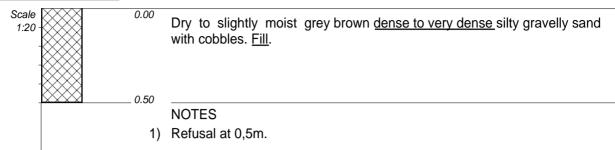
SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP62 Sheet 1 of 1

JOB NUMBER: 20/91/TP

CONTRACTOR: INCLINATION: **ELEVATION:** MACHINE: Hand Excavated DIAM: X-COORD: Y-COORD: DRILLED BY: DATE:

PROFILED BY: Riaan / Warren DATE: 10/12/2020


TYPE SET BY: Renee DATE: 25/01/2021 12:08 SETUP FILE: STANDARD.SET

TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: TP63 Sheet 1 of 1

JOB NUMBER: 20/91/TP

3) No sample.

4) Stable sidewalls.

2) No evidence of water.

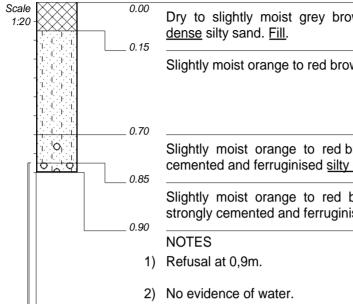
 CONTRACTOR:
 INCLINATION:
 ELEVATION:

 MACHINE: Hand Excavated
 DIAM:
 X-COORD:

 DRILLED BY:
 DATE:
 Y-COORD:

 PROFILED BY : Riaan / Warren
 DATE : 10/12/2020

 TYPE SET BY : Renee
 DATE : 25/01/2021 12:08


SETUP FILE: STANDARD.SET

TEXT: ...wayHouseWaterUpgrade.txt

HOLE No: TP64
Sheet 1 of 1

JOB NUMBER: 20/91/TP

Dry to slightly moist grey brown to light yellow brown loose to medium dense silty sand. $\underline{\text{Fill}}$.

Slightly moist orange to red brown loose pinholed silty sand. Hillwash.

Slightly moist orange to red brown mottled black <u>medium dense</u> weakly cemented and ferruginised <u>silty gravelly sand</u>. Nodular ferricrete.

Slightly moist orange to red brown mottled black <u>dense to very dense</u> strongly cemented and ferruginised <u>silty sandy gravel</u>. Hardpan ferricrete.

- 3) Disturbed sample taken at 07--0,85m.
- 4) Stable sidewalls.

07--0.85m

CONTRACTOR:

MACHINE: Hand Excavated

DRILLED BY:

PROFILED BY: Riaan / Warren

TYPE SET BY : Renee

SETUP FILE: STANDARD.SET

INCLINATION:

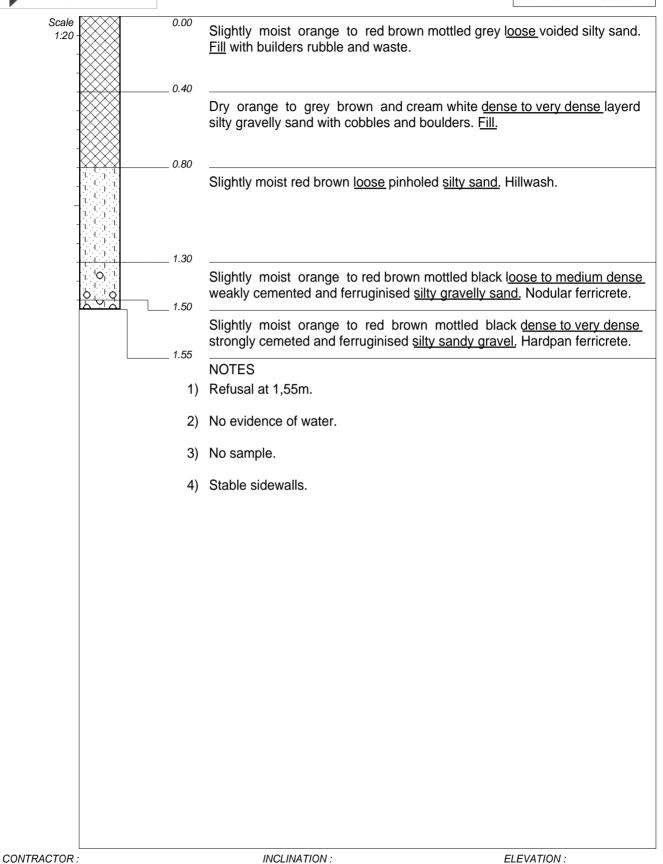
DIAM :

DATE:

DATE: 10/12/2020

DATE: 25/01/2021 12:08

TEXT: ..wayHouseWaterUpgrade.txt


ELEVATION : X-COORD :

Y-COORD:

HOLE No: TP65 Sheet 1 of 1

JOB NUMBER: 20/91/TP

DIAM:

DATE:

DATE: 10/12/2020

DATE: 25/01/2021 12:08

TEXT : ..wayHouseWaterUpgrade.txt

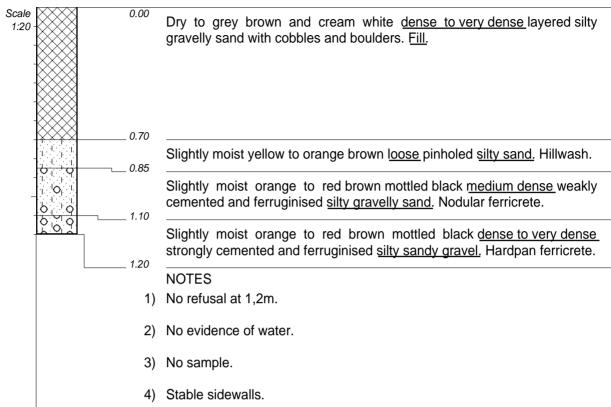
MACHINE: Hand Excavated

PROFILED BY: Riaan / Warren

SETUP FILE: STANDARD.SET

DRILLED BY:

TYPE SET BY: Renee


HOLE No: TP65

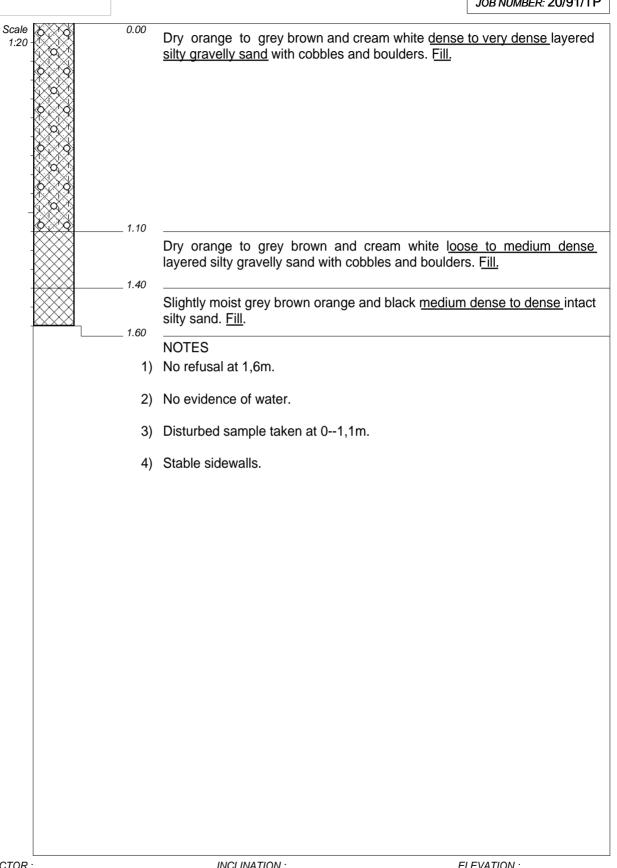
X-COORD: Y-COORD:

HOLE No: TP66 Sheet 1 of 1

JOB NUMBER: 20/91/TP

CONTRACTOR: INCLINATION: **ELEVATION:** MACHINE: Hand Excavated DIAM: X-COORD: Y-COORD: DRILLED BY: DATE:

DATE: 25/01/2021 12:08


PROFILED BY: Riaan / Warren DATE: 10/12/2020 TYPE SET BY: Renee

SETUP FILE: STANDARD.SET TEXT : ..wayHouseWaterUpgrade.txt

HOLE No: TP67 Sheet 1 of 1

JOB NUMBER: 20/91/TP

CONTRACTOR: INCLINATION: **ELEVATION:** MACHINE: Hand Excavated DIAM: X-COORD: Y-COORD: DRILLED BY: DATE:

PROFILED BY: Riaan / Warren DATE: 10/12/2020 TYPE SET BY: Renee DATE: 25/01/2021 12:08

SETUP FILE: STANDARD.SET TEXT: ..wayHouseWaterUpgrade.txt

Name _

Zutari Consulting Engineers Halfway House Water Upgrade

LEGEND Sheet 1 of 1

JOB NUMBER: 20/91/TP

000	GRAVEL/gravels	{SA02}
0 0	GRAVELLY	{SA03}
	SAND	{SA04}
	SANDY	{SA05}
	SILTY	{SA07}
	CLAY	{SA08}
	CLAYEY	{SA09}
+ * \	GRANITE	{SA17}{SA44}
•	FERRICRETE	{SA24}
	FILL	{SA32}
	DISTURBED SAMPLE	{SA38}
	COBBLES	{SA58}

CONTRACTOR:

MACHINE:

DRILLED BY:

PROFILED BY:

INCLINATION : DIAM : DATE : DATE : ELEVATION : X-COORD : Y-COORD :

> LEGEND SUMMARY OF SYMBOLS

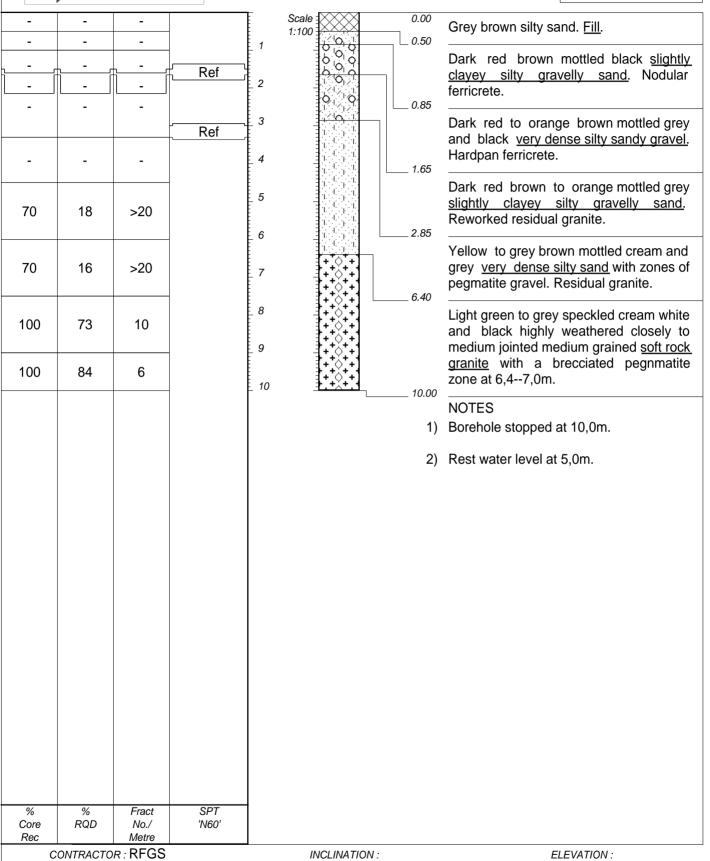
TYPE SET BY : Renee DATE : 25/01/2021 12:08
SETUP FILE : STANDARD.SET TEXT : ..wayHouseWaterUpgrade.txt

APPENDIX C: BOREHOLE LOGS

MACHINE:

PROFILED BY: Warren

SETUP FILE: STANDARD.SET


TYPE SET BY: Renee

DRILLED BY:

Zutari Consulting Engineers Halfway House Water Upgrade

HOLE No: BH01 Sheet 1 of 1

JOB NUMBER: 20/91/BH

DIAM:

DATE:

DATE: 11/12/2020

DATE: 11/12/2020 09:53

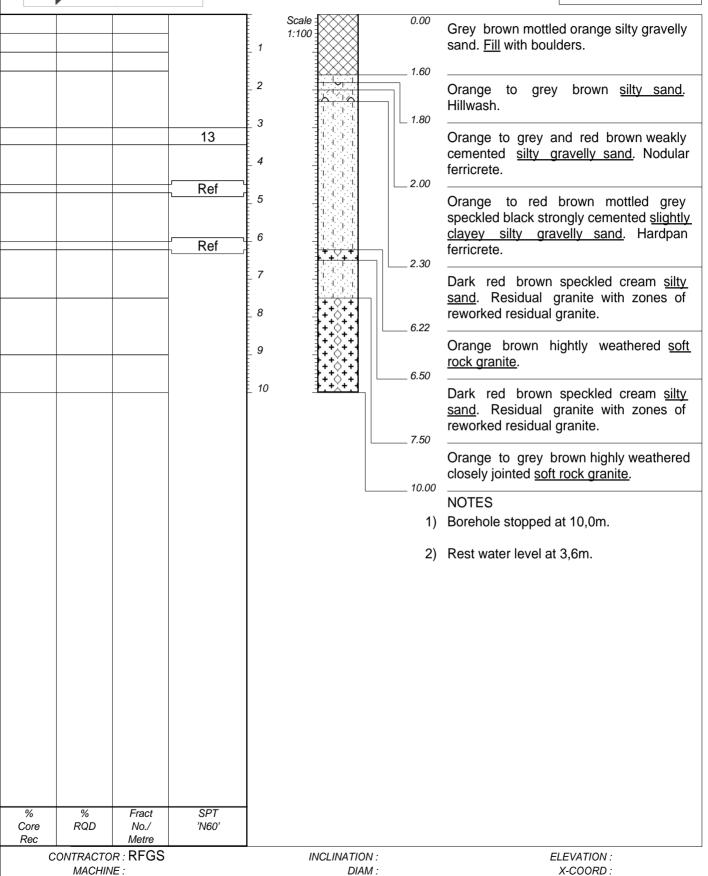
TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: BH01

X-COORD: Y-COORD:

DRILLED BY:

PROFILED BY: Warren


SETUP FILE: STANDARD.SET

TYPE SET BY: Renee

Zutari Consulting Engineers Halfway House Water Upgrade

HOLE No: BH02 Sheet 1 of 1

JOB NUMBER: 20/91/BH

DATE:

DATE: 11/12/2020

DATE: 11/12/2020 09:53

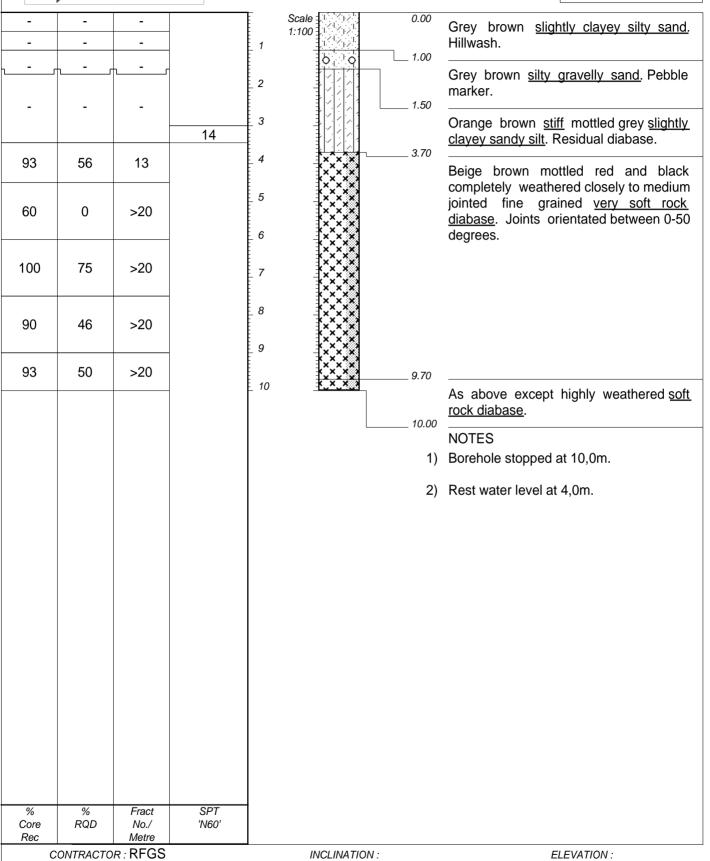
TEXT : ..wayHouseWaterUpgrade.txt

HOLE No: BH02

Y-COORD:

MACHINE:

PROFILED BY: Warren


TYPE SET BY: Renee

DRILLED BY:

Zutari Consulting Engineers Halfway House Water Upgrade

HOLE No: BH03 Sheet 1 of 1

JOB NUMBER: 20/91/BH

DIAM:

DATE:

DATE: 11/12/2020

DATE: 11/12/2020 09:53

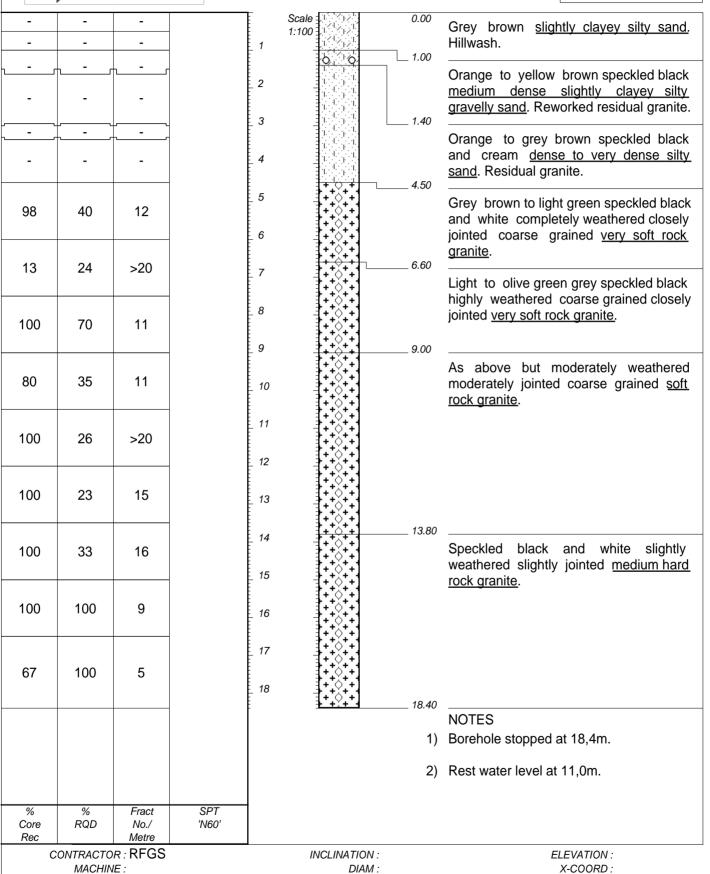
HOLE No: BH03

X-COORD:

Y-COORD:

DRILLED BY:

PROFILED BY: Warren


SETUP FILE: STANDARD.SET

TYPE SET BY: Renee

Zutari Consulting Engineers Halfway House Water Upgrade

HOLE No: BH04 Sheet 1 of 1

JOB NUMBER: 20/91/BH

DATE:

DATE: 11/12/2020

DATE: 11/12/2020 09:53

TEXT: ..wayHouseWaterUpgrade.txt

HOLE No: BH04

Y-COORD:

LEGEND Sheet 1 of 1

JOB NUMBER: 20/91/BH

000	GRAVEL	{SA02}
0 0	GRAVELLY	{SA03}
	SAND	{SA04}
	SANDY	{SA05}
	SILT	{SA06}
	SILTY	{SA07}
	CLAYEY	{SA09}
++++ ++++ +++++	PLUTONIC/norite/syenite	{SA17}
ČXČXŠ ČXČXŠ ČXČXŠ	HYPABYSSAL/anorthosite/syenite aplite	{SA18}
	DIORITE FAMILY	{SA41}
\$ \$	FREE QUARTZ/visible quartz	{SA44}
 	GRANITE	{SA17}{SA44}
(DIABASE	{SA18}{SA41}
	FILL	{SA32}
V V V V		

CONTRACTOR: INCLINATION: ELEVATION:

MACHINE: DIAM: X-COORD:

DRILLED BY: DATE: Y-COORD:

DATE:

TYPE SET BY : Renee DATE : 11/12/2020 09:53

PROFILED BY:

SETUP FILE : STANDARD.SET TEXT : ..wayHouseWaterUpgrade.txt

D07A Crossman Pape and Ass@datesunication in Action cc t/a Software Africa ~ www.softwareafrica.co.za

LEGEND SUMMARY OF SYMBOLS

APPENDIX D: DYNAMIC PROBE SUPER HEAVY TEST RESULTS

RFGS Geotechnical Services (Pty) LTD -REG Nr: 2015/134679/07 22 Mustang Avenue- Pretoria – Gauteng – South Africa Rian Fourie +27 82 825 1050

www.drillingsa.co.za

www.drillingsa	.CO.2a										
Job Type:	Penetrometer	r Testing			Remarks:						
Quote Ref:	RFQ1175										
Site Location:	Grand Centra	l									
Date:	21-01-2021										
Done By:	Delito										
DEPTH:	DPSH1	DPSH2	DPSH3	DPSH4	DPSH5	DPSH6	DPSH7				
0.3	1	1	13	1	1	1	1				
0.6	1	1	1	1	1	1	1				
0.9	2	2	1	1	6	1	1				
1.2	3	32	40	4	7	2	4				
1.5	4			7							
		100REF	41		15	2	4				
1.8	15		100REF	7	17	6	6				
2.1	10			20	19	16	14				
2.4	14			31	19	19	14				
2.7	14			100REF	12	16	19				
3.0	8				13	29	25				
3.3	11				24	32	35				
3.6	9				25	25	100REF				
3.9	14				33	29	TOURLI				
4.2	11				100REF	30					
4.2					TOOKER						
	19					33					
4.8	22					45					
5.1	17					100REF					
5.4	20										
5.7	20										
6.0	21 STOP										
6.3											
6.6											
6.9											
7.2	-										
7.5											
7.8											
8.1											
8.4											
8.7											
9.0											
9.3											
9.6											
9.9											
10.2											
10.5											
10.8	+										
11.1											
11.4											
11.7											
12.0											
12.3											
12.6											
12.9											
13.2	1										
13.5	+										
13.8	+										
	-										
14.1	-										
14.4											
14.7											
15.0											
Re-drive											
0.3											
0.6	1										
5.5											

RFGS Geotechnical Services (Pty) LTD -REG Nr: 2015/134679/07 22 Mustang Avenue- Pretoria – Gauteng – South Africa Rian Fourie +27 82 825 1050

www.drillingsa.co.za

Job Type:		. Tastina			Remarks:						
Quote Ref:	Penetrometer	rTesting			Remarks:						
Site Location:	RFQ1174 Grand Centra	ı			+						
Date:		I									
Done By:	21-01-2021 Delito				-						
DEPTH:	Delito DPSH9	DPSH8	DPSH10	DPSH11	DPSH12						
0.3	1	1	1								
0.6				1	1						
	1	1	1	1	1						
0.9	1	1	1	1	1						
1.2	2	3	4	12	2						
1.5	22	6	4	33	4						
1.8	100REF	25	24	40	10						
2.1		39	15	100REF	11						
2.4		100REF	15		14						
2.7			17		14						
3.0			26		17						
3.3			38		35						
3.6			39								
3.9			100REF								
4.2			TOOKLI								
4.5											
4.8											
5.1	-										
5.4											
5.7											
6.0											
6.3											
6.6											
6.9											
7.2											
7.5											
7.8											
8.1											
8.4											
8.7											
9.0											
9.3											
9.6											
9.9											
10.2											
10.5											
10.5											
11.1											
11.4											
11.7											
12.0											
12.3											
12.6											
12.9											
13.2											
13.5											
13.8											
14.1											
14.4											
14.7											
15.0											
Re-drive											
0.3											
0.6											

APPENDIX E: LABORATORY TEST RESULTS

Quality | Excellence | On Time

Client Name: Crossman Pape & Associates

Project Name: 2091: Halfway House Water Upgrade

 Job Number:
 CPA-38

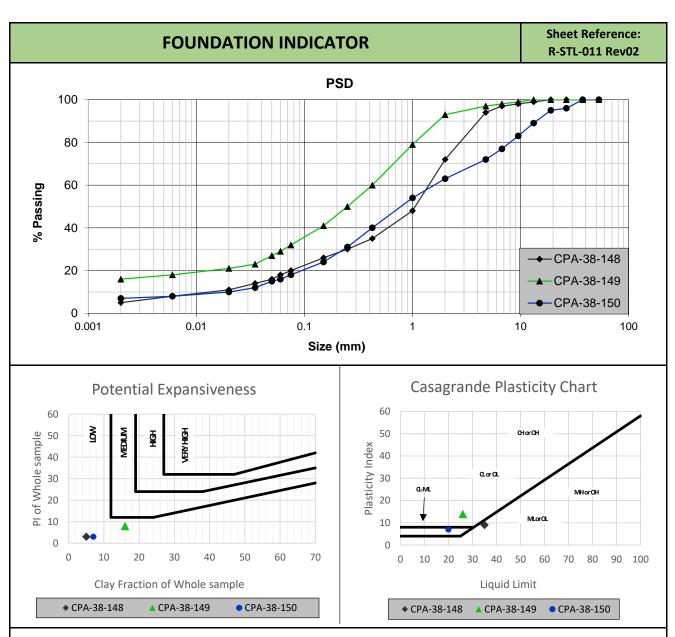
 Date:
 2021-02-10

Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

		FOUNDA	ATION INI	DICATOR		Sheet Reference: R-STL-011 Rev02		
	ading & Hydr article Size (m			Atterberg	g Limits & Cla	ssification		
Sample	TP 3	TP 6	TP 11	Sample	TP 3	TP 6	TP 11	
Depth (m)	0.5 - 1.3	0.6 - 1.35	0.25 - 0.85	Depth (m)	0.5 - 1.3	0.6 - 1.35	0.25 - 0.85	
Lab No	CPA-38-148	CPA-38-149	CPA-38-150	Lab No	CPA-38-148	CPA-38-149	CPA-38-150	
53.0	100	100	100	Liquid Limit (%)	35	26	20	
37.5	100	100	100	Plastic Limit (%)	26	12	13	
26.5	100	100	96	Plasticity Index (%)	9	14	7	
19.0	100	100	95	Linear Shrinkage (%)	4.5	6.5	3.0	
13.2	99	100	89	PI of whole sample	8	3		
9.5	98	99	83					
6.7	97	98	77	% Gravel	28	7	37	
4.75	94	97	72	% Sand	54	64	47	
2.00	72	93	63	% Silt	13	13	9	
1.00	48	79	54	% Clay	5	16	7	
0.425	35	60	40	Activity	1.8	0.9	1.0	
0.250	30	50	31					
0.150	26	41	24	% Soil Mortar	72	93	63	
0.075	20	32	18					
0.060	18	29	16	Grading Modulus	1.73	1.15	1.79	
0.050	16	27	15	Moisture Content (%)	N/T	N/T	N/T	
0.035	14	23	12	Relative Density (SG)*	2.65	2.65	2.65	
0.020	11	21	10					
0.006	8	18	8	Unified (ASTM D2487)	SC	SC	SC-SM	
0.002	5	16	7	AASHTO (M145-91)	A - 2 - 4	A - 2 - 6	A - 2 - 4	

Remarks: *: Assumed

N / T: Not Tested


Client Name: Crossman Pape & Associates

Project Name: 2091: Halfway House Water Upgrade

 Job Number:
 CPA-38

 Date:
 2021-02-10

Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

Quality | Excellence | On Time

Client Name: Crossman Pape & Associates

Project Name: 2091: Halfway House Water Upgrade

 Job Number:
 CPA-38

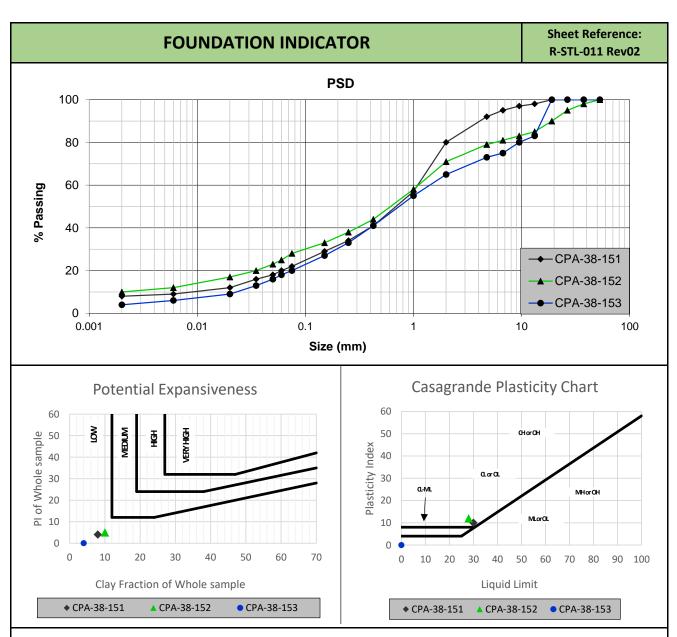
 Date:
 2021-02-10

Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

		FOUNDA	ATION INI	DICATOR		Sheet Reference: R-STL-011 Rev02		
	ading & Hydr article Size (m			Atterberg	g Limits & Cla	ssification		
Sample	TP 19	TP 67	TP 53	Sample	TP 19	TP 67	TP 53	
Depth (m)	0 - 1.6	0 - 0.1	0.7 - 1.4	Depth (m)	0 - 1.6	0 - 0.1	0.7 - 1.4	
Lab No	CPA-38-151	CPA-38-152	CPA-38-153	Lab No	CPA-38-151	CPA-38-152	CPA-38-153	
53.0	100	100	100	Liquid Limit (%)	30	28	-	
37.5	100	98	100	Plastic Limit (%)	20	16	-	
26.5	100	95	100	Plasticity Index (%)	10	12	SP	
19.0	100	90	100	Linear Shrinkage (%)	6.0	0.5		
13.2	98	85	83	PI of whole sample	5	-		
9.5	97	83	80					
6.7	95	81	75	% Gravel	20	29	35	
4.75	92	79	73	% Sand	60	46	47	
2.00	80	71	65	% Silt	12	15	14	
1.00	57	58	55	% Clay	8	10	4	
0.425	41	44	41	Activity	1.3	1.2	0.0	
0.250	34	38	33					
0.150	29	33	27	% Soil Mortar	80	71	65	
0.075	22	28	20					
0.060	20	25	18	Grading Modulus	1.57	1.57	1.74	
0.050	18	23	16	Moisture Content (%)	N/T	N/T	N/T	
0.035	16	20	13	Relative Density (SG)*	2.65	2.65	2.65	
0.020	12	17	9					
0.006	9	12	6	Unified (ASTM D2487)	SC	SC	SM	
0.002	8	10	4	AASHTO (M145-91)	A - 2 - 4	A - 2 - 6	A - 1 - b	

Remarks: *: Assumed

N / T: Not Tested


Client Name: Crossman Pape & Associates

Project Name: 2091: Halfway House Water Upgrade

 Job Number:
 CPA-38

 Date:
 2021-02-10

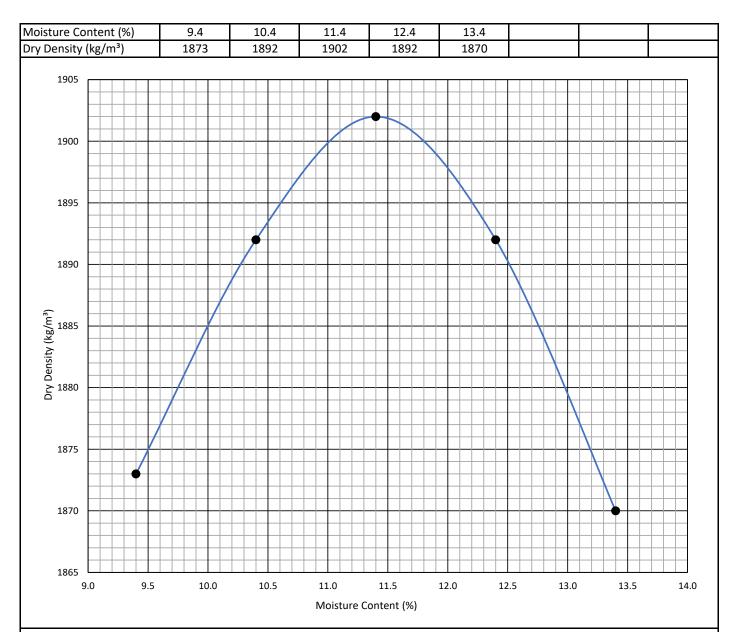
Method: SANS 3001 GR1, GR3, GR10 GR12 & BS 1377 (where applicable)

Quality | Excellence | On Time

Client Name:Crossman Pape & AssociatesJet Project Name:Jet Project Name:2091: Halfway House Water Upgrade

Sample: TP 3 **Depth: (m)** 0.5 - 1.3

Job Number: CPA-38
Lab Number: CPA-38-148
Method: SANS 3001 GR30


10-Feb-21

Date:

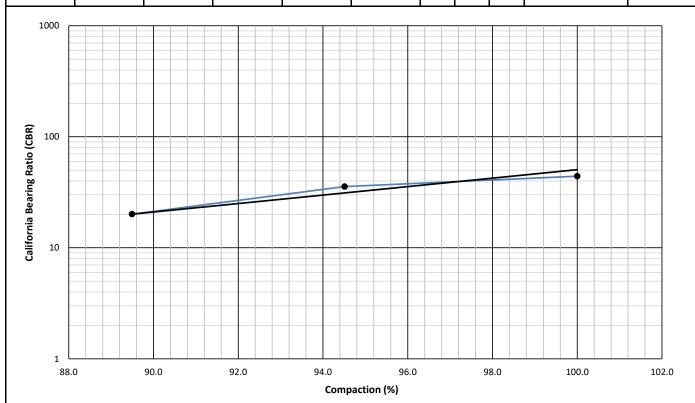
MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 1902 kg/m³ Optimum Moisture Content: 11.4 %

Quality | Excellence | On Time

Client Name: Crossman Pape & Associates
Project Name: 2091: Halfway House Water Upgrade


Sample: TP 3 **Depth: (m)** 0.5 - 1.3

Job Number: CPA-38
Lab Number: CPA-38-148
Method: SANS 3001 GR40
Date: 10-Feb-21

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASI	HTO Values	Com	paction Data:	: CBR	Swell	CBR at (mm)		.ml	CBR Values		
MDD	OMC	Dry Dens.	MC	Comp.	Swell	CDR at (mm)			CBN Values		
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR	
									100	44	
1902	11.4	1913	10.8	100.0	0.0	44	52	55	98	41	
									97	39	
1902	11.4	1808	10.8	94.5	0.0	36	35	34	95	36	
									93	30	
1902	11.4	1712	10.8	89.5	0.0	20	18	17	90	21	

SANS 3001 GR30

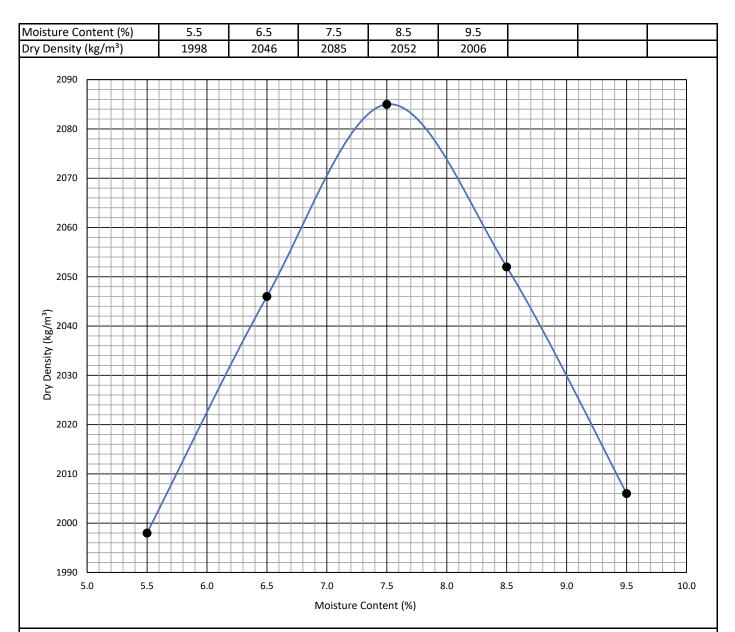
Quality | Excellence | On Time

Client Name: Crossman Pape & Associates

Project Name: 2091: Halfway House Water Upgrade

Sample: TP 6 **Depth: (m)** 0.6 - 1.35

Job Number: CPA-38 Lab Number: CPA-38-149


Date: 10-Feb-21

Method:

MDD & OMC DETERMINATION (Mod. AASHTO)

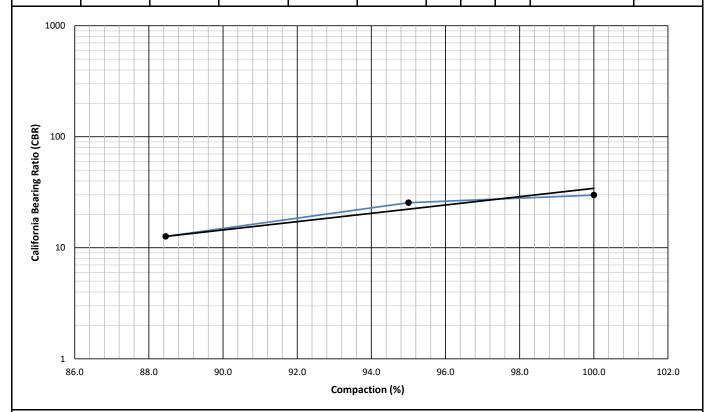
Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 2085 kg/m³ Optimum Moisture Content: 7.5 %

Quality | Excellence | On Time

Client Name: Crossman Pape & Associates
Project Name: 2091: Halfway House Water Upgrade

 Sample:
 TP 6


 Depth: (m)
 0.6 - 1.35

Job Number: CPA-38
Lab Number: CPA-38-149
Method: SANS 3001 GR40
Date: 10-Feb-21

CALIFORNIA BEARING RATIO

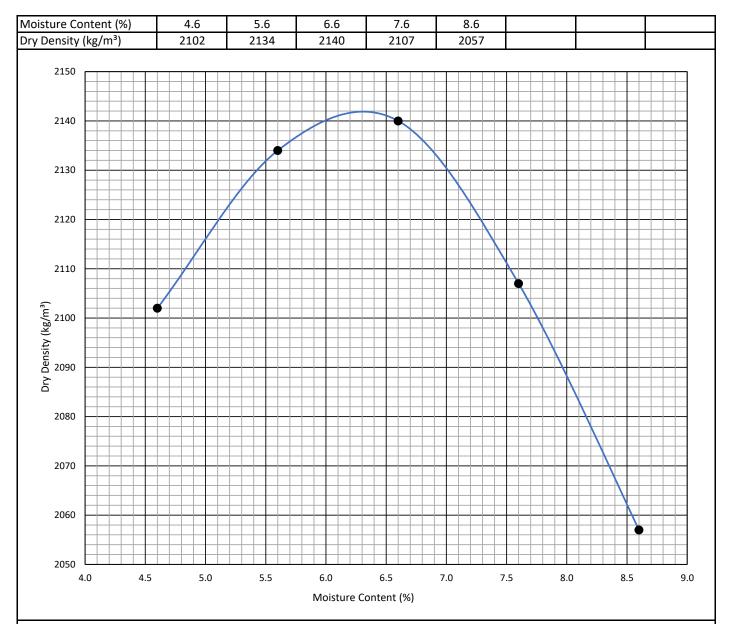
Sheet Reference: R-STL-014 Rev01

Mod. AASH	ITO Values	Com	paction Data:	: CBR	Swell	CB	CPP at (mm)		R at (mm) CBR Values		
MDD	OMC	Dry Dens.	MC	Comp.	Sweii	CBR at (mm)			CBN Values		
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR	
									100	30	
2085	7.5	2061	8.2	100.0	0.0	30	32	33	98	28	
									97	27	
2085	7.5	1958	8.2	95.0	0.0	25	27	25	95	25	
									93	21	
2085	7.5	1823	8.2	88.5	0.0	13	10	8	90	15	

Quality | Excellence | On Time

Crossman Pape & Associates **Client Name: Project Name:** 2091: Halfway House Water Upgrade

Sample: TP 11 Depth: (m) 0.25 - 0.85 Job Number: CPA-38 CPA-38-150 **Lab Number:**


Date:

SANS 3001 GR30 Method: 10-Feb-21

MDD & OMC DETERMINATION (Mod. AASHTO)

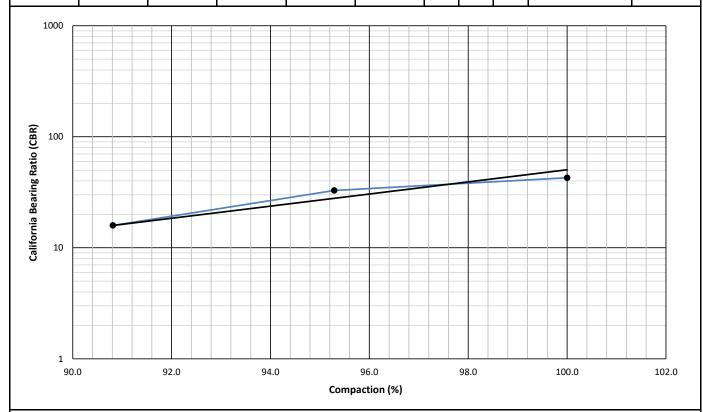
Sheet Reference: R-STL-013 Rev01

kg/m³ Maximum Dry Density: 2146 **Optimum Moisture Content:** 6.3 %

Quality | Excellence | On Time

Client Name: Crossman Pape & Associates

Project Name: 2091: Halfway House Water Upgrade


Sample: TP 11 **Depth: (m)** 0.25 - 0.85

Job Number: CPA-38
Lab Number: CPA-38-150
Method: SANS 3001 GR40
Date: 10-Feb-21

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASH	ITO Values	Com	paction Data:	: CBR	Swell	CB	CPP at /mm)		CBR Values		
MDD	OMC	Dry Dens.	MC	Comp.	Sweii	CBR at (mm)			CDN Values		
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR	
									100	43	
2146	6.3	2144	6.3	100.0	0.0	43	52	59	98	38	
									97	36	
2146	6.3	2043	6.3	95.3	0.0	33	38	38	95	31	
									93	23	
2146	6.3	1947	6.3	90.8	0.0	16	15	14	90	14	

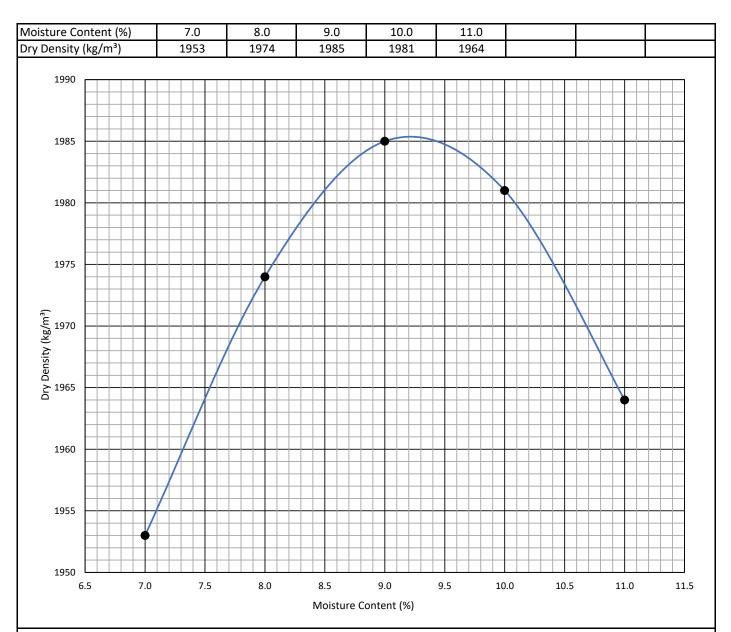
SANS 3001 GR30

Quality | Excellence | On Time

Client Name: Crossman Pape & Associates
Project Name: 2091: Halfway House Water Upgrade

Sample: TP 19 **Depth: (m)** 0 - 1.6

Job Number: CPA-38 Lab Number: CPA-38-151


Date: 10-Feb-21

Method:

MDD & OMC DETERMINATION (Mod. AASHTO)

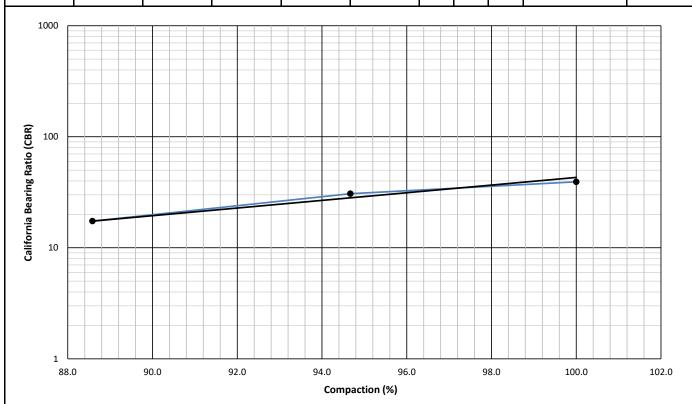
Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 1988 kg/m³ Optimum Moisture Content: 9.2 %

Quality | Excellence | On Time

Client Name: Crossman Pape & Associates
Project Name: 2091: Halfway House Water Upgrade

 Sample:
 TP 19


 Depth: (m)
 0 - 1.6

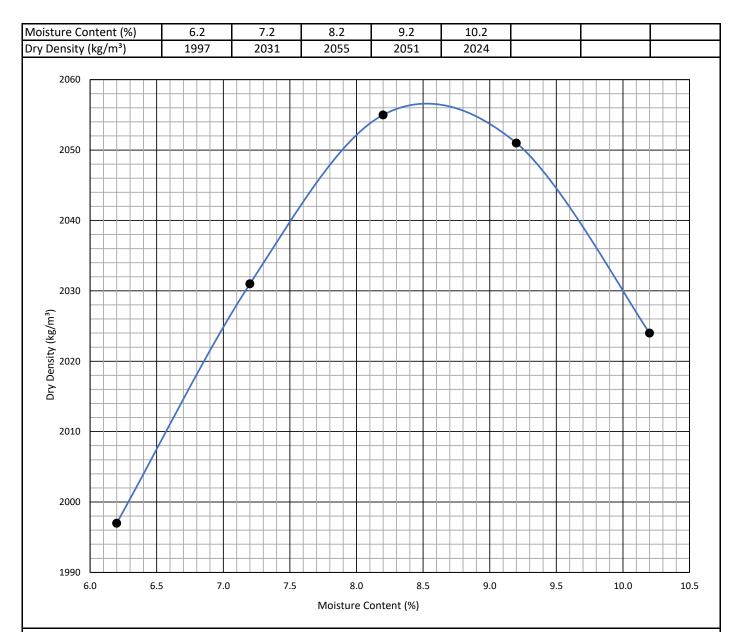
Job Number: CPA-38
Lab Number: CPA-38-151
Method: SANS 3001 GR40
Date: 10-Feb-21

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASH	ITO Values	Com	paction Data	: CBR	Swell	CPP at (mm)			CBR Values		
MDD	ОМС	Dry Dens.	MC	Comp.	Sweii	CBR at (mm)			CDN Values		
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR	
									100	39	
1988	9.2	1988	9.3	100.0	0.1	39	52	57	98	36	
									97	34	
1988	9.2	1882	9.3	94.7	0.1	31	35	34	95	31	
									93	26	
1988	9.2	1761	9.3	88.6	0.1	17	16	14	90	20	

Quality | Excellence | On Time


Client Name:Crossman Pape & AssociatesJob Number:CPA-38Project Name:2091: Halfway House Water UpgradeLab Number:CPA-38-152Sample:TP 67Method:SANS 3001 GR30

Depth: (m) 0 - 0.1 **Date:** 10-Feb-21

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 2059 kg/m³ Optimum Moisture Content: 8.5 %

Unit 1, 13 Bloubokkie Street, Koedoespoort 0186
Roelof | 072 674 6343 | roelof@stlab.co.za
Gerrie | 082 309 4448 | gerrie@stlab.co.za
www.stlab.co.za

Quality | Excellence | On Time

Client Name: Crossman Pape & Associates
Project Name: 2091: Halfway House Water Upgrade

 Sample:
 TP 67

 Depth: (m)
 0 - 0.1

Job Number: CPA-38
Lab Number: CPA-38-152
Method: SANS 3001 GR40
Date: 10-Feb-21

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASH	ITO Values	Com	paction Data:	: CBR	Swell	CBR at (mm)			CBR Values	
MDD	OMC	Dry Dens.	MC	Comp.	Sweii	6	K at (III	1111)	CDR Valu	ies
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR
									100	24
2059	8.5	2070	8.6	100.0	0.1	24	28	31	98	22
									97	21
2059	8.5	1972	8.6	95.3	0.2	20	22	23	95	19
									93	15
2059	8.5	1849	8.6	89.3	0.3	10	9	8	90	10

Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error made in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place. Confidentiality statement: Unless the release of information is required by law or covered by confidentiality agreements all information obtained or created during the performance of laboratory activities will be kept confidential.

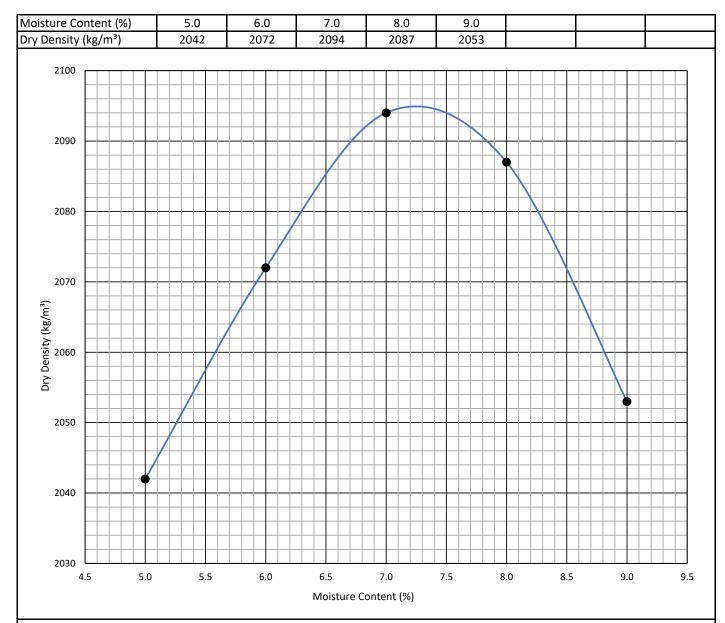
Unit 1, 13 Bloubokkie Street, Koedoespoort 0186
Roelof | 072 674 6343 | roelof@stlab.co.za
Gerrie | 082 309 4448 | gerrie@stlab.co.za
www.stlab.co.za

Quality | Excellence | On Time

Client Name: Crossman Pape & Associates

Project Name: 2091: Halfway House Water Upgrade

Sample: TP 53 **Depth: (m)** 0.7 - 1.4


Job Number: CPA-38
Lab Number: CPA-38-153
Method: SANS 3001 GR30

Date: 10-Feb-21

MDD & OMC DETERMINATION (Mod. AASHTO)

Sheet Reference: R-STL-013 Rev01

Maximum Dry Density: 2099 kg/m³ Optimum Moisture Content: 7.3 %

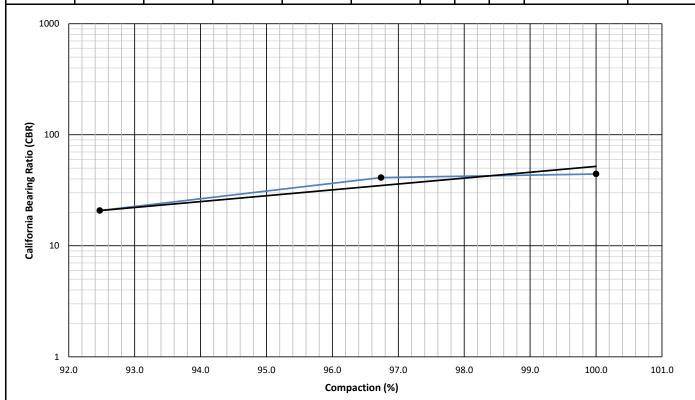
Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error made in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place. Confidentiality statement: Unless the release of information is required by law or covered by confidentiality agreements all information obtained or created during the performance of laboratory activities will be kept confidential.

Unit 1, 13 Bloubokkie Street, Koedoespoort 0186
Roelof | 072 674 6343 | roelof@stlab.co.za
Gerrie | 082 309 4448 | gerrie@stlab.co.za
www.stlab.co.za

Quality | Excellence | On Time

Client Name: Crossman Pape & Associates

Project Name: 2091: Halfway House Water Upgrade


Sample: TP 53 **Depth: (m)** 0.7 - 1.4

Job Number: CPA-38
Lab Number: CPA-38-153
Method: SANS 3001 GR40
Date: 10-Feb-21

CALIFORNIA BEARING RATIO

Sheet Reference: R-STL-014 Rev01

Mod. AASI	HTO Values	Com	paction Data:	CBR	Swell	CP	D at /m	.m.)	CBR Valu	00
MDD	OMC	Dry Dens.	MC	Comp.	Sweii	L CB	R at (m	iiii <i>)</i>	CDR Valu	es
(kg/m³)	(%)	(kg/m³)	(%)	(%)	(%)	2.5	5.0	7.5	Compaction (%)	CBR
									100	44
2099	7.3	2085	7.3	100.0	0.0	44	53	57	98	42
									97	41
2099	7.3	2017	7.3	96.7	0.0	41	48	49	95	31
									93	23
2099	7.3	1928	7.3	92.5	0.0	21	20	18	90	14

Although everything possible is done to ensure testing is performed accurately, neither Specialised Testing Laboratory (Pty) Ltd nor any of its directors, managers, employees or contractors can be held liable for any damages whatsoever arising from any error made in performing any tests, nor from any conclusions drawn therefrom. Test results are to be published in full. Samples will be kept for 1 month after the submission of test results due to limited storage space, unless other arrangements are in place. Confidentiality statement: Unless the release of information is required by law or covered by confidentiality agreements all information obtained or created during the performance of laboratory activities will be kept confidential.

36 Fourth Street, Booysens Reserve, Johannesburg 2091 PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117•Fax: +27 (0)11 835 2503 E-mail: jhb@civilab.co.za•Website: www.civilab.co.za

Mark

Civil Engineering Testing Laboratories

01/02/2021

01/02/2021 - 16/02/2021

Client : CROSSMAN PAPE ASSOCIATES cc

Address : P O BOX 3557

KRAMERVIEW

2060

Attention :

Facsimile : 011 465 4586 Date Tested

Project : Halfway House Water Upgrade

Project No.: 2021-B-86 Report Status : Final

Page : 1 of 16

Client Reference :

Date Received

Order No.

Herewith please find the test report(s) pertaining to the above project. All tests were conducted in accordance with

prescribed test method(s). Information herein consists of the following:

Test(s) conducted / Item(s) measured	Qty.	Test Method(s)	Authorized By**	Page(s)
Moisture Density Relationship	7.000	SANS 3001 GR30	B Mvubu	6-12
Atterberg Limits <0.425mm	7.000	SANS 3001 GR10	B Mvubu	2-5; 13-16
Sieve Analysis 0.075mm	7.000	SANS 3001 GR1	B Mvubu	2-5; 13-16
California Bearing Ratio (CBR)	7.000	SANS 3001 GR40	B Mvubu	13-16
Hydrometer Analysis	7.000	SANS 3001 GR3	B Mvubu	2-5

Any test results contained in this report and marked with * in the table above are "not SANAS accredited" and are not included in the schedule of accreditation for this laboratory.

Any information contained in this test report pertain only to the areas and/or samples tested. Documents may only be reproduced or published in their full context.

While every care is taken to ensure that all tests are carried out in accordance with recognised standards, neither Civilab (Proprietary) Limited nor its employess shall be liable in any way whatsoever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequences thereof.

All interpretations, Interpolations, Opinions and/or Classifications contained in this report falls outside our scope of accreditation.

The following parameters, where applicable, were excluded from the classification procedure: Chemical modifications, Additional fines, Fractured Faces, Soluble Salts, pH, Conductivity, Coarse Sand Ratio, Durability (COLTO: G4-G9).

The following parameters, where applicable, were assumed: Rock types were assumed to be of an Arenaceous nature with Siliceous cementing material.

Unless otherwise requested or stated, all samples will be discarded after a period of 3 months.

This report is completely confidential between the parties (Civilab and Civilab's client) and shall not be disclosed to anybody else, unless agreed upon in writing or made publicly available by the client or required to make available by law.

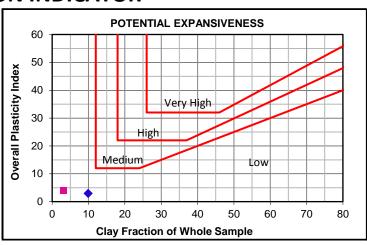
Deviations in Test Methods:

Technical Signatory:	
Signature:	

^{**}All results are authorized electronically by approved managers and/or technical signatories.

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

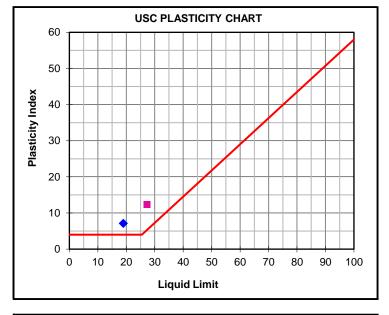


Civil Engineering Testing Laboratories

CROSSMAN PAPE AND ASSOCIATES CC Client Date Received: 01/02/2021 Date Reported: 16/02/2021 Project Halfway House 2021-B-86 Page No. Project No of 16

FOUNDATION INDICATOR

Laboratory Number	S23 ◆	S24 ■
Field Number	TP5	TP24
Client Reference		
Depth (m)	0.6-1.35	0.6-1.4
Position		
Coordinates X Y		
Description		
Aditional Information		
Calcrete / Crushed Stabilizing Agent		

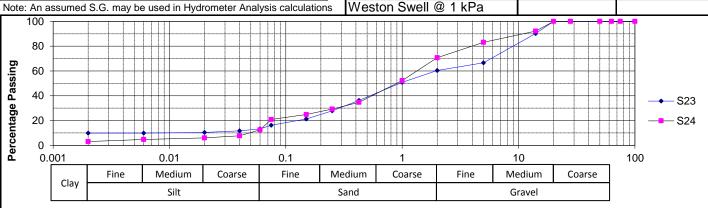


Moisture Content & Relative Density

Moisture Content (%) Relative Density (S.G.)

Sieve Analysis (Wet Prep)

	100 mm	100	100
	75 mm	100	100
	63 mm	100	100
	50 mm	100	100
l iĝ	37.5 mm	100	100
ass	28 mm	100	100
Percentage Passing	20 mm	100	100
ge	14 mm	90	92
l ta	5 mm	67	83
l ē	2 mm	60	71
er	1 mm	51	52
"	0.425 mm	36	35
	0.250 mm	28	29
	0.150 mm	21	25
	0.075 mm	16	21
Grading Modulus		1.87	1.74



Hydrometer Analysis

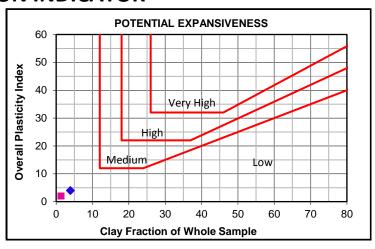
Trydrometer Analysis					
ge	0.060 mm		13		
taç ng	0.040 mm	12	8		
en	0.020 mm	10	6		
Percentage Passing	0.006 mm	10	5		
<u> </u>	0.002 mm	10	3		
Gravel	%	40	29		
Sand	%	47	58		
Silt	%	3	9		
Clay	%	10	3		

Laboratory Number		S23 🔷	S24 ■		
Atterberg Limits -425μ	,				
Liquid Limit	%	19	27		
Plasticity Index	%	7	12		
Linear Shrinkage	%	2.5	5.5		
Overall PI	%	3	4		
Classifications					

HRB (AASHTO) A-2-6(0) A-2-4(0)Unified (ASTM D2487) SC SC Weston Swell @ 1 kPa

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

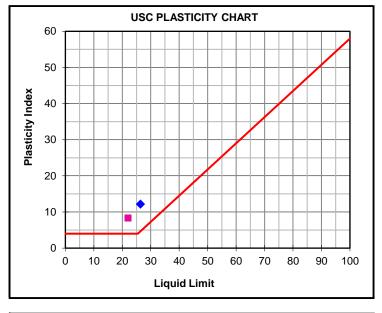


Civil Engineering Testing Laboratories

Client:CROSSMAN PAPE AND ASSOCIATES CCDate Received:01/02/2021Project:Halfway HouseDate Reported:16/02/2021Project No:2021-B-86Page No.:3 of 16

FOUNDATION INDICATOR

Laboratory Number	S25 ♦	S26 ■
Field Number	TP25	TP63
Client Reference		
Depth (m)	0.0-2.0	0.0-0.5
Position		
Coordinates X Y		
Description		
Aditional Information		
Calcrete / Crushed		
Stabilizing Agent		

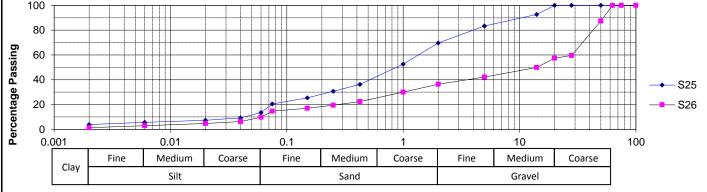


Moisture Content & Relative Density

Moisture Content (%)
Relative Density (S.G.)

Sieve Analysis (Wet Prep)

	100 mm	100	100
	75 mm	100	100
	63 mm	100	100
	50 mm	100	87
, iš	37.5 mm	100	65
Passing	28 mm	100	60
	20 mm	100	57
ge	14 mm	93	50
lta	5 mm	83	42
Percentage	2 mm	70	36
er	1 mm	53	30
	0.425 mm	36	22
	0.250 mm	31	19
	0.150 mm	25	17
	0.075 mm	20	15
Grading Modulus		1.74	2.27


Hydrometer Analysis

Trydrometer Analysis					
e Je	0.060 mm	14	10		
taç ng	0.040 mm	9	6		
Passing	0.020 mm	7	5		
Pa Pa	0.006 mm	6	3		
<u> </u>	0.002 mm	4	1		
Gravel	%	30	64		
Sand	%	56	27		
Silt	%	10	8		
Clay	%	4	1		

Laboratory Number		525	526
Atterberg Limits -425μ	,		
Liquid Limit	%	26	22
Plasticity Index	%	12	8
Linear Shrinkage	%	4.5	3.0
Overall PI	%	4	2
•	Class	ifications	

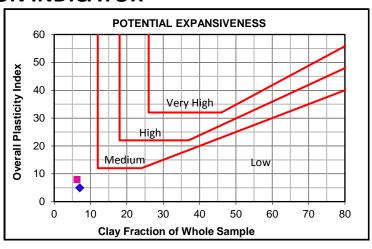
Silt % 10 8 HRB (AASHTO) A-2-6(0) A-2-4(0) Unified (ASTM D2487) SC GC

Note: An assumed S.G. may be used in Hydrometer Analysis calculations Weston Swell @ 1 kPa

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

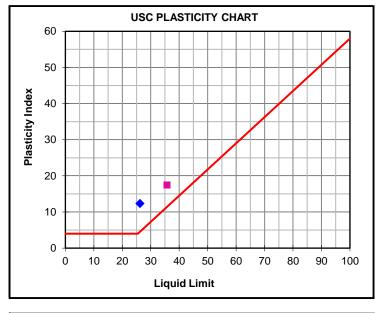

 Client
 :
 CROSSMAN PAPE AND ASSOCIATES CC
 Date Received:
 01/02/2021

 Project
 :
 Halfway House
 Date Reported:
 16/02/2021

 Project No
 :
 2021-B-86
 Page No.
 :
 4 of 16

FOUNDATION INDICATOR

Laboratory N	umber	S27 🔷	S28 ■
Field Number	٢	TP64	TP45
Client Refere	nce		
Depth (m)		0.70-0.85	0.60-1.50
Position			
Coordinates	X Y		
Description			
Aditional Info	rmation		
Calcrete / Crushed			
Stabilizing Ag	jent		



Moisture Content & Relative Density

Moisture Content (%)
Relative Density (S.G.)

Sieve Analysis (Wet Prep)

	100 mm	100	100
	75 mm	100	100
	63 mm	100	100
	50 mm	100	100
١	37.5 mm	100	100
Passing	28 mm	100	100
	20 mm	100	100
ge	14 mm	92	99
lta	5 mm	75	90
Percentage	2 mm	65	85
er	1 mm	56	69
	0.425 mm	43	45
	0.250 mm	36	37
	0.150 mm	31	31
	0.075 mm	25	26
Grading Mod	ulus	1.67	1.45

Hydrometer Analysis

e Je	0.060 mm	20	23
ercentage Passing	0.040 mm	15	18
ssi	0.020 mm	12	14
erc Pa	0.006 mm	10	10
<u> </u>	0.002 mm	7	6
Gravel	%	35	15
Sand	%	45	61
Silt	%	13	17
Clay	%	7	6
Note: An assume	d S.G. may be us	ed in Hydrometer A	Analysis calculations

Fine

Clay

Medium

Silt

Coarse

Fine

Laboratory Number		S27 •	S28 •		
Atterberg Limits -425µ	,				
Liquid Limit	%	26	36		
Plasticity Index	%	12	17		
Linear Shrinkage	%	5.5	8.5		
Overall PI	%	5	8		
Classifications					

Medium

Gravel

A-2-6(0)

SC

Coarse

A-2-6(1)

SC

100 80 40 20 0.001 0.001 0.01 1 1 10 100

Medium

Sand

HRB (AASHTO)

Unified (ASTM D2487)

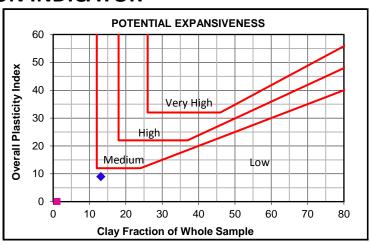
Weston Swell @ 1 kPa

Coarse

Fine

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

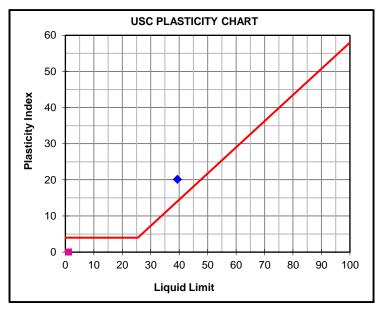


Civil Engineering Testing Laboratories

Client Date Received: 01/02/2021 Date Reported: 16/02/2021 Project Page No. Project No of 16

FOUNDATION INDICATOR

Laboratory N	umber	S29 ◆	
Field Number	•	TP28	
Client Refere	nce		
Depth (m)		0.3-1.9	
Position			
Coordinates X Y			
Description			
Aditional Information			
Calcrete / Crushed			
Stabilizing Ag	jent		
Majatura Canta		•	

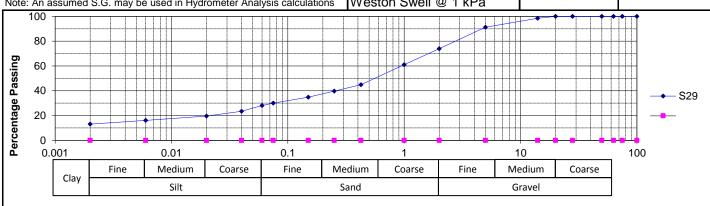


Moisture Content & Relative Density

Moisture Content (%) Relative Density (S.G.)

Sieve Analysis (Wet Prep)

	100 mm	100	
	75 mm	100	
	63 mm	100	
D	50 mm	100	
sin	37.5 mm	100	
Percentage Passing	28 mm	100	
Ġ.	20 mm	100	
ebu	14 mm	98	
nta	5 mm	91	
Ser	2 mm	74	
)er	1 mm	61	
ш	0.425 mm	45	
	0.250 mm	40	
	0.150 mm	35	
	0.075 mm	30	
Grading Mod	ulus	1.51	


Hydrometer Analysis

e de	0.060 mm		
taç ng	0.040 mm	23	
en	0.020 mm	20	
ercentage Passing	0.006 mm	16	
<u> </u>	0.002 mm	13	
Gravel	%	26	
Sand	%	46	
Silt	%	15	
Clay	%	13	

Laboratory Number	S29	•			
Atterberg Limits -425µ					
Liquid Limit	%	39			
Plasticity Index	%	20			
Linear Shrinkage	%	9.5			
Overall PI	%	9			
Classifications					

Note: An assumed S.G. may be used in Hydrometer Analysis calculations

HRB (AASHTO) A-2-6(2) Unified (ASTM D2487) SC Weston Swell @ 1 kPa

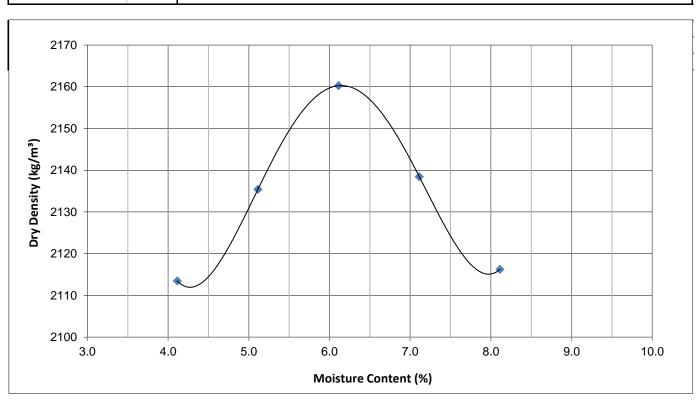
PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za Civil Engineering Testing Laboratories

Client : CROSSMAN PAPE ASSOCIATES cc Date Received: 01/02/2021
Project : Halfway House Water Upgrade Date Reported: 16/02/2021
Project No: 2021-B-86 Page No. : 6 of 16

MOISTURE DENSITY RELATIONSHIP


Laboratory Number	S-23	
Field Number	TP5	
Client Reference		
Depth (m)	0.6-1.35	
Position		
Coordinates X Y		
Description		
Additional Information		
% of Sample Scalped	1.2% scalped on 37.5mm	
Stabilizing Agent	·	

 Maximum Dry Density & Optimum Moisture Content SANS 3001 GR30

 Compactive Effort:
 Modified AASHTO

Dry Density	kg/m³	2138	2160	2135	2113	2116	
Moisture Content	%	7.1	6.1	5.1	4.1	8.1	

Max. Dry Density	kg/m³	2160
Optimum Moisture	%	6.2

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

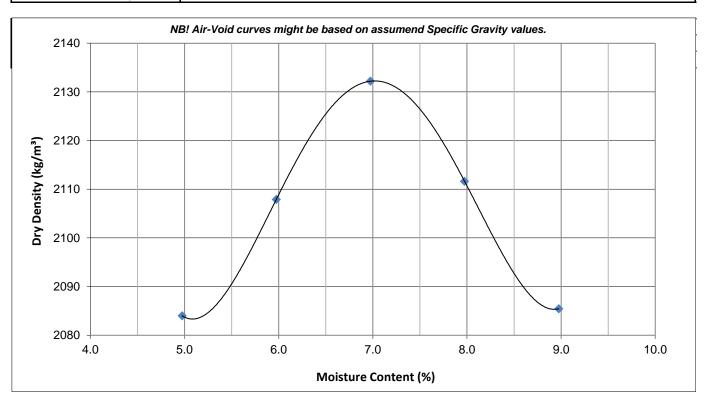
E-mail: jhb@civilab.co.za•Website: www.civilab.co.za Civil Engineering Testing Laboratories

Client : CROSSMAN PAPE ASSOCIATES cc Date Received: 01/02/2021

Project : Halfway House Water Upgrade Date Reported: 16/02/2021

Project No: 2021-B-86 Page No. : 7 of 16

MOISTURE DENSITY RELATIONSHIP


Laboratory Number		S-24
Field Number		TP24
Client Reference		
Depth (m)		0.6-1.4
Position		
Coordinates	Х	
Coordinates	Υ	
Description		
Additional Information	on	
% of Sample Scalpe	of Sample Scalped 2.5% scalped on 37.5mm	
Stabilizing Agent		

Maximum Dry Density & Optimum Moisture Content - SANS 3001 GR30

Compactive Effort:	Modified AASHTO
Compactive Litort.	

Dry Density	kg/m³	2132	2112	2108	2085	2084	
Moisture Content	%	7.0	8.0	6.0	9.0	5.0	

Max. Dry Density	kg/m³	2132
Optimum Moisture	%	7.1

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

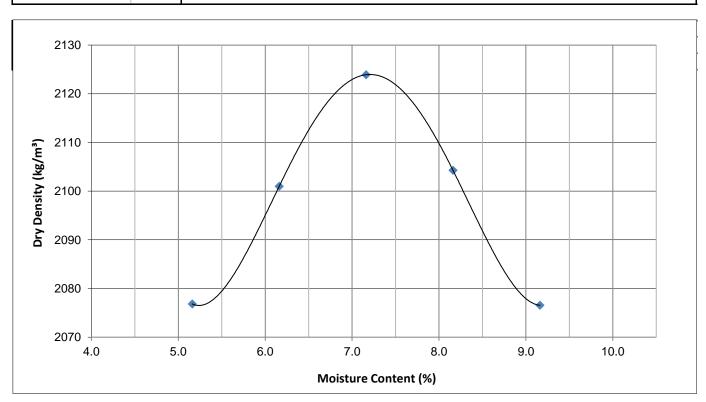
Civil Engineering Testing Laboratories

E-mail: jhb@civilab.co.za•Website: www.civilab.co.za

Client: CROSSMAN PAPE ASSOCIATES cc

Project: Halfway House Water Upgrade Project No: 2021-B-86 Date Received: 01/02/2021
Date Reported: 16/02/2021
Page No. : 8 of 16

MOISTURE DENSITY RELATIONSHIP


Laboratory Number	S-25
Field Number	TP25
Client Reference	
Depth (m)	0.0-2.0
Position	
Coordinates X Y	
Description	
Additional Information	
% of Sample Scalped	1.2% scalped on 37.5mm
Stabilizing Agent	·

Maximum Dry Density & Optimum Moisture Content - SANS 3001 GR30

Compactive Effort: Modified AASHTO

Dry Density	kg/m³	2101	2124	2104	2077	2077	
Moisture Content	%	6.2	7.2	8.2	9.2	5.2	

Max. Dry Density	kg/m³	2124
Optimum Moisture	%	7.2

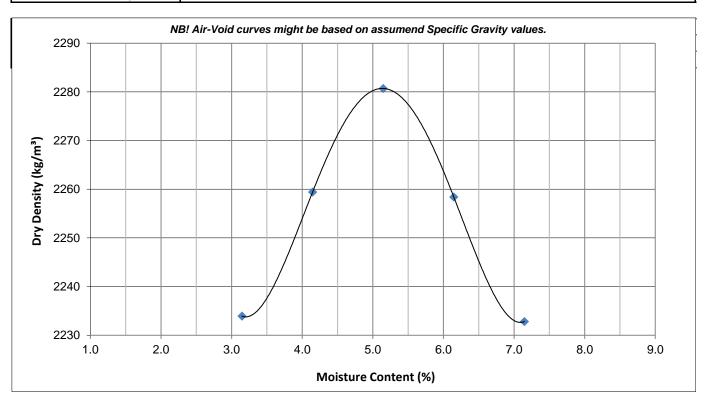
PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: ihb@civilab.co.za • Website: www.civilab.co.za Civil Engineering Testing Laboratories

Client : CROSSMAN PAPE ASSOCIATES cc Date Received: 01/02/2021
Project : Halfway House Water Upgrade Date Reported: 16/02/2021
Project No: 2021-B-86 Page No. : 9 of 16

MOISTURE DENSITY RELATIONSHIP


Laboratory Number		S-26				
Field Number		TP63				
Client Reference						
Depth (m)		0.0-0.5				
Position						
Coordinates	X Y					
Description						
Additional Information						
% of Sample Scalpe	d	15.7% scalped on 37.5mm				
Stabilizing Agent		·				

Maximum Dry Density & Optimum Moisture Content - SANS 3001 GR30

Compactive Effort: Modified AASHTO

Dry Density	kg/m³	2258	2233	2281	2259	2234	
Moisture Content	%	6.1	7.1	5.1	4.1	3.1	

Max. Dry Density	kg/m³	2281
Optimum Moisture	%	5.2

E-mail: ihb@civilab.co.za•Website: www.civilab.co.za

PO Box 82223, Southdale 2135

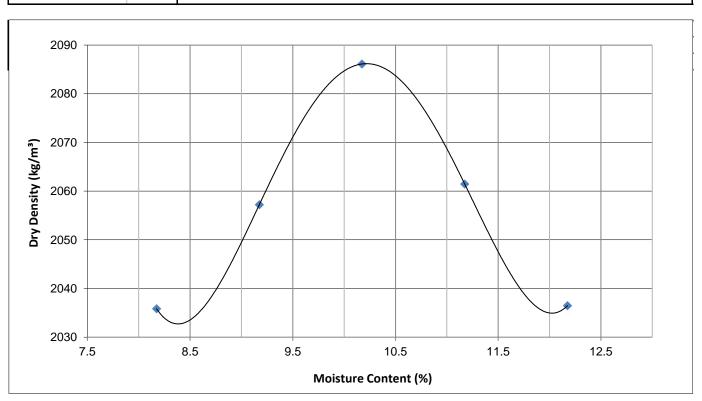
Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

Civil Engineering Testing Laboratories

Client : CROSSMAN PAPE ASSOCIATES cc Date Received:

Project: Halfway House Water Upgrade Date Reported: 16/02/2021
Project No: 2021-B-86 Page No.: 10 of 16

MOISTURE DENSITY RELATIONSHIP


Laboratory Number		S-27				
Field Number		TP64				
Client Reference						
Depth (m)		0.7-0.85				
Position						
Coordinates	Χ					
Coordinates	Υ					
Description						
Additional Information						
% of Sample Scalped		0% scalped on 37.5mm				
Stabilizing Agent		·				

Maximum Dry Density & Optimum Moisture Content - SANS 3001 GR30

Compactive Effort: Modified AASHTO

Dry Density	kg/m³	2036	2057	2086	2061	2036	
Moisture Content	%	8.2	9.2	10.2	11.2	12.2	

Max. Dry Density	kg/m³	2086
Optimum Moisture	%	10.3

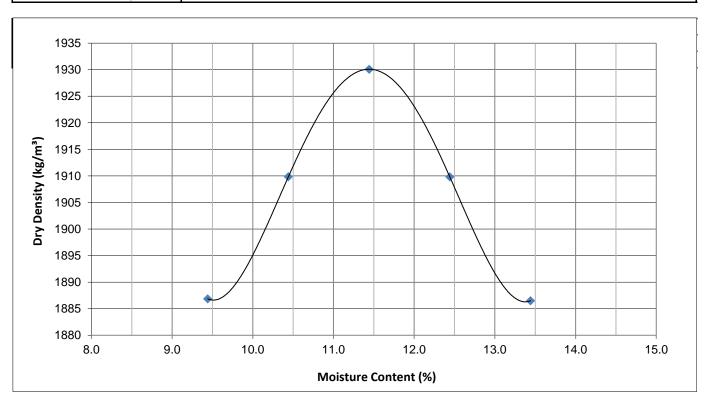
PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

Civil Engineering Testing Laboratories

E-mail: ihb@civilab.co.za•Website: www.civilab.co.za Date Received: 01/02/2021 Client CROSSMAN PAPE ASSOCIATES cc Project Halfway House Water Upgrade Date Reported: 16/02/2021 Project No: 2021-B-86 Page No. 11 of 16

MOISTURE DENSITY RELATIONSHIP


Laboratory Number		S-28
Field Number		TP45
Client Reference		
Depth (m)		0.6-1.5
Position		
Coordinates	Х	
Coordinates	Υ	
Description		
Additional Information		
% of Sample Scalped		0% scalped on 37.5mm
Stabilizing Agent		·

Maximum Dry Density & Optimum Moisture Content -**SANS 3001 GR30**

Compactive Effort:	Modified AASHTO
--------------------	-----------------

Dry Density	kg/m³	1910	1930	1910	1887	1886	
Moisture Content	%	12.4	11.4	10.4	9.4	13.4	

Max. Dry Density	kg/m³	1930
Optimum Moisture	%	11.4

E-mail: ihb@civilab.co.za • Website: www.civilab.co.za

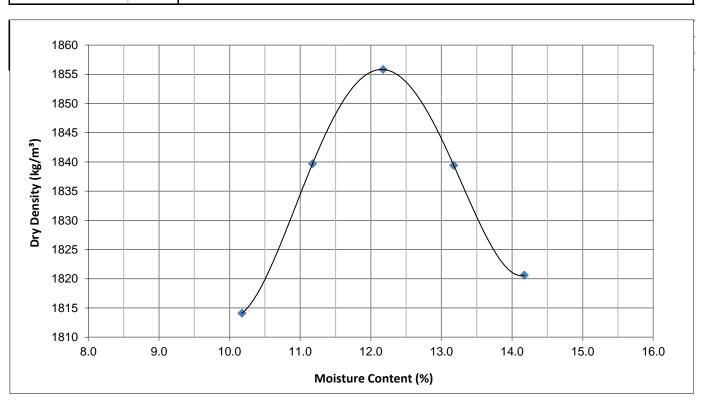
PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

Civil Engineering Testing Laboratories

Date Received: 01/02/2021 Client CROSSMAN PAPE ASSOCIATES cc Project Halfway House Water Upgrade Date Reported: 16/02/2021 Project No: 2021-B-86

Page No. 12 of 16


MOISTURE DENSITY RELATIONSHIP

Laboratory Number	S-29
Field Number	TP28
Client Reference	
Depth (m)	0.3-1.9
Position	
Coordinates X Y	
Description	
Additional Information	
% of Sample Scalped	0% scalped on 37.5mm
Stabilizing Agent	·

Maximum Dry Density & Optimum Moisture Content -SANS 3001 GR30 Compactive Effort: Modified AASHTO

Dry Density	kg/m³	1821	1839	1856	1840	1814	
Moisture Content	%	14.2	13.2	12.2	11.2	10.2	

Max. Dry Density	kg/m³	1856
Optimum Moisture	%	12.2

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

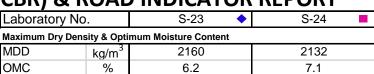
Civil Engineering Testing Laboratories

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

CROSSMAN PAPE ASSOCIATES cc Client Date Received 01/02/2021 Halfway House Water Upgrade Project Date Reported 16/02/2021 Project No. 2021-B-86 Page No. 13 of 16

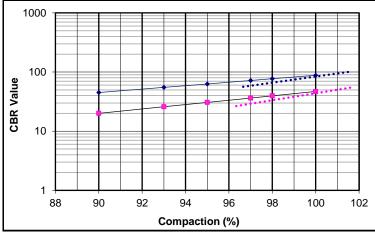
CALIFORNIA BEARING RATIO (CBR) & ROAD INDICATOR REPORT

Laboratory No.	S-23 🔷	S-24
Field Number	TP5	TP24
Client Reference		
Depth (m)	0.6-1.35	0.6-1.4
Position		
Coordinates X Y		
Description		
Additional informatio	n	
Calcrete/Crushed		
Stabilizing Agent		


Sieve Analysis (Wet preparation)			
	100 mm	100	
	75 mm	100	

	100 mm	100	100
	75 mm	100	100
б	63 mm	100	100
	53 mm	100	100
Percentage Passing	37.5 mm	100	100
as	28 mm	100	100
Ф	20 mm	100	100
tag	14 mm	90	92
.eu	5 mm	67	83
erc	2 mm	60	71
_	1 mm	51	52
	0.425 mm	36	35
	0.250 mm	28	29
	0.150 mm	21	25
	0.075 mm	16	21
Grading M	odulus	1.87	1.74

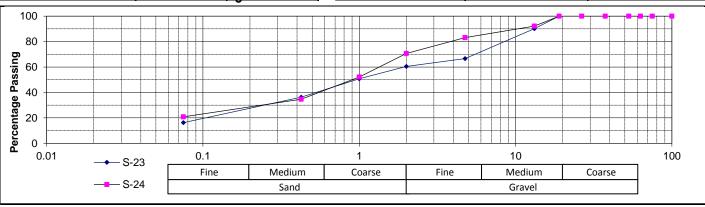
Soil Mortar Analysis				
Coarse Sand	39			
Coarse Fine Sand	11			
Medium Fine Sand	8			
Fine Fine Sand	7			
Silt and Clay	36			


Atterberg Limits

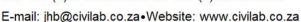
Liquid Limit (%)	19	27
Plasticity Index (%)	7	12
Linear Shrinkage (%)	25.0	5.5

California Bearing Ratio

Compaction Data							
Moisture	%	6.	164366	21	7.020429822		
Dry Density	kg/m ³	2192	2085	1976	2166	2054	1948
Compaction	n %	101.5	96.5	91.5	101.6	96.3	91.4
Penetration Data							
	2.54 mm	100	55	45	54	26	20
CBR at	5.08 mm	151	109	59	84	33	19
	7.62 mm	175	122	63	98	33	18
Swell	%	0.1	0.1	0.1	0.2	0.3	0.3
Final Moistu	8.3	12.26	16.65	8.928	12.08	14.35	



Interpolated CBR Data


	@	100%	0	88	47
	@	98%	도	77	40
~	@	97%	AS	72	36
CBR	@	95%	₹	63	31
	@	93%	Mod	55	26
	@	90%	2	45	20
	@	SANS300	1 Midpoint	74	38

Classifications

HRB (AASHTO)	A-2-4(0)	A-2-6(0)
COLTO	G7	G7
TRH14	G6	G6

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

ca•Website: www.civilab.co.za Civil Engineering Testing Laboratories

Client:CROSSMAN PAPE ASSOCIATES ccDate Received:01/02/2021Project:Halfway House Water UpgradeDate Reported:16/02/2021Project No.:2021-B-86Page No.:14 of 16

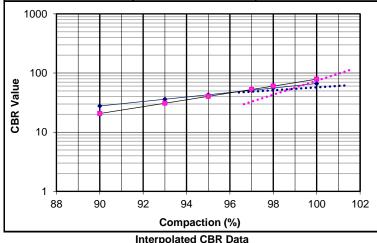
CALIFORNIA BEARING RATIO (CBR) & ROAD INDICATOR REPORT

Laboratory No.	S-25 🔷	S26 ■
Field Number	TP25	TP63
Client Reference		
Depth (m)	0.0-2.0	0.0-0.5
Position		
Coordinates X Y		
Description		
Additional information	ו	
Calcrete/Crushed		
Stabilizing Agent		

Sieve Analysis (Wet preparation)							
	100 mm	100	100				
	75 mm	100	100				
	63 mm	100	100				
D	53 mm	100	87				
sin	37.5 mm	100	65				
as	28 mm	100	60				
Percentage Passing	20 mm	100	57				
	14 mm	93	50				
	5 mm	83	42				
	2 mm	70	36				
	1 mm	53	30				
	0.425 mm	36	22				
	0.250 mm	31	19				
	0.150 mm	25	17				
	0.075 mm	20	15				

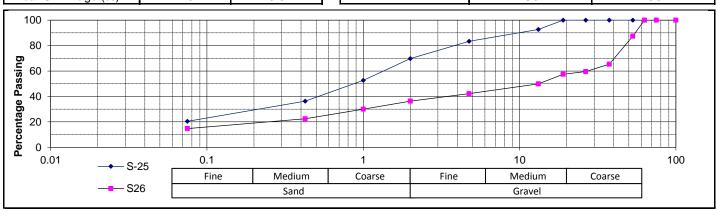
Soil Mortar Analysis					
Coarse Sand 40 51					
Coarse Fine Sand	14	8			
Medium Fine Sand	11	6			
Fine Fine Sand	8	6			
Silt and Clay	27	30			

1.74


2.27

Grading Modulus

Atterberg Limits		
Liquid Limit (%)	26	22
Plasticity Index (%)	12	8
Linear Shrinkage (%)	15	3.0


Laboratory No.		S-25	•	S-26		
Maximum Dry Density & Optimum Moisture Content						
MDD	kg/m ³	2124		2281		
OMC %		7.2		5.2		
California Bearing Ratio						

Camerina Doaring Nacio							
	Compaction Data						
Moisture	%	7.2	2086123	314	5.1	5.119835867	
Dry Density	kg/m ³	2151	2045	1937	2315	2200	2087
Compaction	n %	101.3	96.3	91.2	101.5	96.5	91.5
Penetration Data							
	2.54 mm	61	47	28	111	28	21
CBR at	5.08 mm	63	52	31	139	35	27
	7.62 mm	60	52	31	141	35	34
Swell	%	0.1	0.0	0.1	0.0	0.1	0.1
Final Moistu	8.8	11.21	15.81	6.702	9.169	13.76	
•							

	@	100%	0.	67	79		
	@	98%	노	56	60		
_~	@	97%	ASF	51	53		
CBR	@	95%	∢.	43	40		
	@	93%	Mod	36	31		
	@	90%	2	28	21		
	@	SANS3001	l Midpoint	54	56		
	Classifications						

Olassifications						
HRB (AASHTO)	A-2-6(0)	A-2-4(0)				
COLTO	G6	G6				
TRH14	G6	G6				

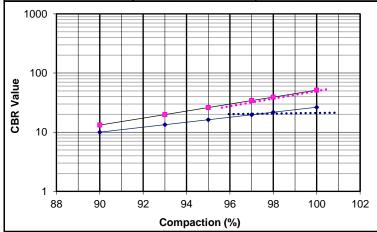
Tel: +27 (0)11 835 3117•Fax: +27 (0)11 835 2503 E-mail: jhb@civilab.co.za•Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Client : CROSSMAN PAPE ASSOCIATES cc Date Received : 01/02/2021
Project : Halfway House Water Upgrade Date Reported : 16/02/2021
Project No. : 2021-B-86 Page No. : 15 of 16

CALIFORNIA BEARING RATIO (CBR) & ROAD INDICATOR REPORT

Laboratory No.	S-27 🔷	S-28
Field Number	TP64	TP45
Client Reference		
Depth (m)	0.7-0.85	0.6-1.5
Position		
Coordinates X Y		
Description		
Additional information		
Calcrete/Crushed		
Stabilizing Agent		


Otabilizini	g / tgcrit				
Sieve Analysis (Wet preparation)					
	100 mm	100	100		
	75 mm	100	100		
	63 mm	100	100		
D	53 mm	100	100		
sin	37.5 mm	100	100		
Passing	28 mm	100	100		
ө	20 mm	100	100		
tag	14 mm	92	99		
Ģ	5 mm	75	90		
Percentage	2 mm	65	85		
_	1 mm	56	69		
	0.425 mm	43	45		
	0.250 mm	36	37		
	0.150 mm	31	31		
	0.075 mm	25	26		
Grading Modulus		1.67	1.45		

Soil Mortar Analysis				
Coarse Sand	49	39		
Coarse Fine Sand	8	8		
Medium Fine Sand	8	7		
Fine Fine Sand	7	6		
Silt and Clay	29	40		

Atterberg Limits		
Liquid Limit (%)	26	37
Plasticity Index (%)	12	17
Linear Shrinkage (%)	4.5	8.5

Laboratory No.		S-27 •	S28 ■			
Maximum Dry Density & Optimum Moisture Content						
MDD	kg/m ³	2086	1930			
OMC	%	10.3	11.4			

Ca	California Bearing Ratio							
	Compaction Data							
Moisture		%	10	.244703	888	11	11.15854382	
Dry Density		kg/m ³	2103	2002	1898	1938	1842	1761
Compaction	1	%	100.8	95.9	91.0	100.4	95.5	91.2
			Pene	tration [Data			
	2	.54 mm	21	20	10	53	25	13
CBR at	5	.08 mm	28	22	11	48	25	13
	7	.62 mm	31	23	12	41	22	14
Swell		%	0.2	0.2	0.3	0.3	0.3	0.3
Final Moisture (%) 11.9 13.92 17.94 13.09 15.36 19.				19.41				

	Interpolated CBR Data					
	@	100%	.0	26	51	
	@	98%	Ξ	22	39	
_~	@	97%	ASI	20	34	
CBR	@	95%	∢ :	16	26	
	@	93%	Mod	13	20	
	@	90%	2	10	13	
	@	SANS300	1 Midpoint	21	37	

Classifications					
HRB (AASHTO)	A-2-6(0)	A-2-6(1)			
COLTO	G8				
TRH14	G8	G8			

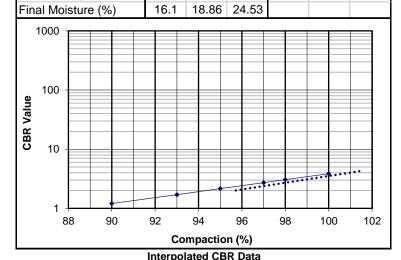
Tel: +27 (0)11 835 3117•Fax: +27 (0)11 835 2503 E-mail: jhb@civilab.co.za•Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Client : CROSSMAN PAPE ASSOCIATES cc Date Received : 01/02/2021
Project : Halfway House Water Upgrade Date Reported : 16/02/2021
Project No. : 2021-B-86 Page No. : 16 of 16

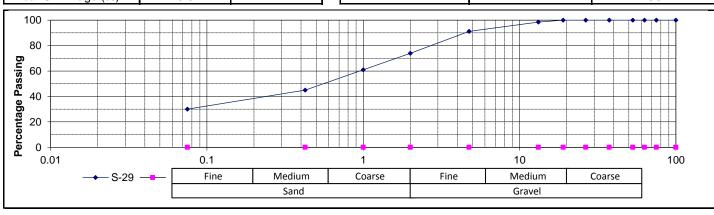
CALIFORNIA BEARING RATIO (CBR) & ROAD INDICATOR REPORT

Laboratory No.	S-29 ♦	
Field Number	TP28	
Client Reference		
Depth (m)	0.3-1.9	
Position		
Coordinates X Y		
Description		
Additional information		
Calcrete/Crushed		
Stabilizing Agent		


Sieve Analysis (Wet preparation)					
	100 mm	100			
	75 mm	100			
	63 mm	100			
D	53 mm	100			
sin	37.5 mm	100			
Passing	28 mm	100			
	20 mm	100			
Percentage	14 mm	98			
.c	5 mm	91			
erc	2 mm	74			
۵	1 mm	61			
	0.425 mm	45			
	0.250 mm	40			
	0.150 mm	35			
	0.075 mm	30			
Grading Modulus		1.51			

Soil Mortar Analysis					
Coarse Sand	39				
Coarse Fine Sand	11				
Medium Fine Sand	8				
Fine Fine Sand	7				
Silt and Clay	36				

Atterberg Limits		
Liquid Limit (%)	39	
Plasticity Index (%)	20	
Lincar Chrinkaga (0/)	0.5	


Laboratory No.		S-29 🔷		
Maximum Dry	Density & Opti	mum Moisture Content		
MDD	kg/m ³	1856		
OMC	%	12.2		
California Bearing Ratio				

Compaction Data							
Moisture	%	12	.268913	312			
Dry Density	kg/m ³	1882	1772	1692			
Compaction			91.2				
		Pene	tration I	Data			
	2.54 mm	4	2	1			
CBR at	5.08 mm	4	2	2			
	7.62 mm	4	2	2			
Swell	%	2.3	2.9	3.7			

into polatoa obit bata						
	@	100%	0.	4		
	@	98%	%	3		
~	@	97%	ASI	3		
CBR	@	95%	∢ .	2		
٥	@	93%	Mod	2		
	@	90%	2	1		
	@	SANS300	1 Midpoint	3		
	Classifications					

Olassifications							
HRB (AASHTO)	A-2-6(2)						
COLTO							
TRH14		G8					

WATERLAB (Pty) Ltd Reg. No.: 1983/009165/07

V.A.T. No.: 4130107891

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020

Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES BASSON INDEX

Date received: 2021-01-26 Date completed: 2021-02-10

Project number: 1000 Report number: 97570 Order number:

Client name: Crossman Pape & Associates

Address: 7 Manor Close, Norscot Manor, Douglasdale, Jhb Telephone: 011 465 1699

Contact person: Warren Kretzinger Email: warren@crossmanpape.co.za Cell: 083 324 4371

Analyses in mg/ℓ	Sample Identification:			
(Unless specified otherwise)	TP3 (0.5-1.3)	TP6 (0.6-1.35)		
Sample Number	117189	117190		
pH Value at 25°C	4.0	4.4		
pHs Value at 20°C (calc)	10.0	9.7		
Electrical Conductivity in mS/m at 25°C	13.5	13.4		
Total Dissolved Solids* (calc)	90	90		
Total Alkalinity as CaCO₃	8	8		
Total Hardness as CaCO₃ (calc)	25	39		
Calcium Hardness as CaCO ₃ (calc)	12	22		
Calcium as Ca	5	9		
Magnesium as Mg	3	4		
Free & Saline Ammonia	<0.1	<0.1		
Ammonium as NH ₄ (calc)	<0.3	<0.3		
Sulphate as SO ₄	29	39		
Chloride as Cl	7	5		
Langelier Index at 20°C (calc)	-6.0	-5.3		
Ryznar Index at 20°C (calc)	16.0	15.1		
Corrosivity Ratio (calc)	5.0	6.0		
Leaching Index [LCSI] (calc)	4712	4241		
Spalling Index [SCSI] (calc)	4	5		
Aggressiveness Index [N _c] (calc)	4716	4246		

*TDS Calculated EC X 6.7

2:1 Distilled Water: Soil Extract

S. Laubscher

WATERLAB (Pty) Ltd Reg. No.: 1983/009165/07

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria

P.O. Box 283, 0020

Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

Date received: 2021-01-26

Project number: 1000 Report number: 97570 Date completed: 2021-02-10

Order number:

Client name: Crossman Pape & Associates

Address: 7 Manor Close, Norscot Manor, Douglasdale, Jhb

Telephone: 011 465 1699

Contact person: Warren Kretzinger Email: warren@crossmanpape.co.za

Cell: 083 324 4371

Analyses in mg/ℓ	Sample Identification:			
(Unless specified otherwise)	TP24 (0.6-1.4)	TP63 (0.0-0.5)		
Sample Number	117191	117192		
pH Value at 25°C	7.9	8.0		
pHs Value at 20°C (calc)	8.5	8.2		
Electrical Conductivity in mS/m at 25°C	15.8	25.1		
Total Dissolved Solids* (calc)	106	168		
Total Alkalinity as CaCO ₃	56	76		
Total Hardness as CaCO ₃ (calc)	62	117		
Calcium Hardness as CaCO ₃ (calc)	50	80		
Calcium as Ca	20	32		
Magnesium as Mg	3	9		
Free & Saline Ammonia	<0.1	<0.1		
Ammonium as NH ₄ (calc)	<0.3	<0.3		
Sulphate as SO ₄	12	30		
Chloride as CI	2	2		
Langelier Index at 20°C (calc)	-0.6	-0.2		
Ryznar Index at 20°C (calc)	9.2	8.4		
Corrosivity Ratio (calc)	0.3	0.4		
Leaching Index [LCSI] (calc)	864	558		
Spalling Index [SCSI] (calc)	2	5		
Aggressiveness Index [N _c] (calc)	866	563		

*TDS Calculated EC X 6.7

2:1 Distilled Water : Soil Extract

S. Laubscher

Assistant Geochemistry Project Manager

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

WATERLAB (Pty) Ltd Reg. No.: 1983/009165/07

V.A.T. No.: 4130107891

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020

Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

Contact person: Warren Kretzinger

CERTIFICATE OF ANALYSES BASSON INDEX

Date received: 2021-01-26 Date completed: 2021-02-10

Project number: 1000 Report number: 97570 Order number:

Client name: Crossman Pape & Associates

Address: 7 Manor Close, Norscot Manor, Douglasdale, Jhb

Email: warren@crossmanpape.co.za Telephone: 011 465 1699 Cell: 083 324 4371

Analyses in mg/ℓ	Sample Ide	ntification:
(Unless specified otherwise)	TP64 (0.7-0.85)	TP5 (0.0-0.7)
Sample Number	117193	117194
pH Value at 25°C	5.0	5.3
pHs Value at 20°C (calc)	10.0	9.6
Electrical Conductivity in mS/m at 25°C	6.2	16.1
Total Dissolved Solids* (calc)	42	108
Total Alkalinity as CaCO₃	8	8
Total Hardness as CaCO₃ (calc)	18	44
Calcium Hardness as CaCO ₃ (calc)	10	27
Calcium as Ca	4	11
Magnesium as Mg	2	4
Free & Saline Ammonia	<0.1	<0.1
Ammonium as NH ₄ (calc)	<0.3	<0.3
Sulphate as SO ₄	19	21
Chloride as Cl	<2	5
Langelier Index at 20°C (calc)	-5.0	-4.3
Ryznar Index at 20°C (calc)	15.1	14.0
Corrosivity Ratio (calc)	2.8	3.6
Leaching Index [LCSI] (calc)	4022	3524
Spalling Index [SCSI] (calc)	3	3
Aggressiveness Index [N _c] (calc)	4025	3528

*TDS Calculated EC X 6.7

2:1 Distilled Water: Soil Extract

S. Laubscher

WATERLAB (Pty) Ltd

Reg. No.: 1983/009165/07

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020

Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES BASSON INDEX

Date completed: 2021-02-10 Date received: 2021-01-26

Project number: 1000 Report number: 97570 Order number:

Client name: Crossman Pape & Associates

Contact person: Warren Kretzinger Address: 7 Manor Close, Norscot Manor, Douglasdale, Jhb Email: warren@crossmanpape.co.za

Telephone: 011 465 1699 Cell: 083 324 4371

Analyses in mg/ℓ	Sample Identification:				
(Unless specified otherwise)	TP28 (0.3-1.9)				
Sample Number	117195				
pH Value at 25°C	5.9				
pHs Value at 20°C (calc)	9.1				
Electrical Conductivity in mS/m at 25°C	21.3				
Total Dissolved Solids* (calc)	143				
Total Alkalinity as CaCO ₃	28				
Total Hardness as CaCO₃ (calc)	52				
Calcium Hardness as CaCO₃ (calc)	27				
Calcium as Ca	11				
Magnesium as Mg	6				
Free & Saline Ammonia	<0.1				
Ammonium as NH₄ (calc)	<0.3				
Sulphate as SO₄	42				
Chloride as CI	<2				
Langelier Index at 20°C (calc)	-3.2				
Ryznar Index at 20°C (calc)	12.3				
Corrosivity Ratio (calc)	1.7				
Leaching Index [LCSI] (calc)	2730				
Spalling Index [SCSI] (calc)	6				
Aggressiveness Index [N _c] (calc)	2736				

*TDS Calculated EC X 6.7

2:1 Distilled Water : Soil Extract

Important notes (see table for corrections on p. 6):

- 1. The above aggressiveness index is only applicable for conditions of laminar flow at a mean annual temperature of 20°C.
- 2. For stagnant/turbulent conditions the aggressiveness index must be corrected.
- 3. For wet/dry cycling conditions (for example in tidal zones) the aggressiveness index must be corrected.
- 4. For mean annual temperatures lower/higher than 20°C the aggressiveness index must be corrected.

S. I	<u>Laubscher</u>					_

Assistant Geochemistry Project Manager

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

WATERLAB (Pty) Ltd

Reg. No.: 1983/009165/07

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020

Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES BASSON INDEX

Date received: 2021-01-26 Date completed: 2021-02-10

Order number: Project number: 1000 Report number: 97570

Client name: Crossman Pape & Associates

Contact person: Warren Kretzinger Address: 7 Manor Close, Norscot Manor, Douglasdale, Jhb Email: warren@crossmanpape.co.za

Telephone: 011 465 1699 Cell: 083 324 4371

Guidelines for assessing overall aggressiveness (Nc):

	-
N _c	Aggressiveness
Not greater than 300	None to mild
400-700	Mild to moderate
800-1000	High
= or > 1 100	Very high

Aggressiveness Towards Concrete and Fibre Cement Pipes						
Index Aggressive Neutral Non- Aggressive						
a) Stability pH (pHs)	>pH	= pH	<ph< td=""></ph<>			
b) Langelier Index Neg. Value Zero Pos. Value						
c) Ryznar Index	>7.5	6-7	<6			

Corrosiveness	Towards metals
Corrosivity	>0.2

Sample Name	Sample Number	Corrosivity Indices	Basson Index
TP3 (0.5-1.3)	117189	Corrosive	Aggressive
TP6 (0.6-1.35)	117190	Corrosive	Aggressive
TP24 (0.6-1.4)	117191	Corrosive	Aggressive
TP63 (0.0-0.5)	117192	Corrosive	Aggressive
TP64 (0.7-0.85)	117193	Corrosive	Aggressive
TP5 (0.0-0.7)	117194	Corrosive	Aggressive
TP28 (0.3-1.9)	117195	Corrosive	Aggressive

S. Laubscher

WATERLAB (Pty) Ltd

Reg. No.: 1983/009165/07

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES BASSON INDEX

Date received: 2021-01-26 Date completed: 2021-02-10

Project number: 1000 Report number: 97570 Order number:

Client name: Crossman Pape & Associates

Contact person: Warren Kretzinger

Address: 7 Manor Close, Norscot Manor, Douglasdale, Jhb Email: warren@crossmanpape.co.za

Telephone: 011 465 1699 Cell: 083 324 4371

To correct for:	Multiply	By: (see Notes 2 to 5 below)	
Turbulence	LCSI	1.75	
Stagnance	LCSI	0.5	
Temperature	LCSI, SCSI, N7 Where N7=0.2 x CI in mg/l	(1+ [0.05 x (T-20)])	
Wet-dry cycles	SCSI	0.23 x 10 ⁻⁶ x TDS x DTF x CPA Where: DTF = Dry Time Fraction CPA = wet-dry cycles per annum	

Note 1: Only if the concrete contains embedded steel.

Note 2: To preserve the correct logical relationships when dealing with the negative sub indices (ie LCSI or SCSI having minus values) they should be multiplied by the reciprocal of the relevant factor indicated in this column

Note 3: If more than one correction is required, multiply by the product of the individual correction factors

Note 4: Use subscript c to indicate that the index has been corrected, eg for turbulent conditions $LCSI_c = LCSI \times 1.75$

Note 5: Round off corrected indices to the nearest 100.

S. Laubscher

WATERLAB (PTY) LTD Reg. No.: 1983/009165/07

WATERLAB

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020

Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES DIN 50 929

Date received: 2021-01-26 Date completed: 2021-02-15

Project number: 1000 Order number: Report number: 97570

Client name: Crossman Pape & Associates

Contact person: Warren Kretzinger Address: 7 Manor Close, Norscot Manor, Douglasdale, Jhb Email: warren@crossmanpape.co.za

Telephone: 011 465 1699 Cell: 083 324 4371

Analyses in mar(0	Sample Identification				
Analyses in mg/ℓ	TP3 (0.5-1.3)	TP6 (0.6-1.35)	TP24 (0.6-1.4)	TP63 (0.0-0.5)	
Sample Number	117189	117190	117191	117192	
pH Value at 25°C	4.0	4.4	7.9	8.0	
Electrical Conductivity	13.5	13.4	15.8	25.1	
Alkalinity as CaCO₃	8	8	56	76	
Acidity as CaCO₃	<5	<5	<5	<5	
Resistivity (ohm.cm) (calc)	7407	7463	6329	3984	
Water content (%)	10.2	7.1	7.3	9.2	
Sulphide as S ²⁻	2.9	4.0	6.8	1.3	
Chloride as Cl	7	5	2	2	
Water Soluble Sulphate as SO ₄	29	39	12	30	
Acid Soluble Sulphate as SO ₄ *	<5	12	30	122	

^[*] Colour interference

S. Laubscher

WATERLAB (PTY) LTD Reg. No.: 1983/009165/07

WATERLAB

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020

Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES DIN 50 929

Date received: 2021-01-26 Date completed: 2021-02-15

Project number: 1000 Order number: Report number: 97570

Client name: Crossman Pape & Associates

Contact person: Warren Kretzinger Address: 7 Manor Close, Norscot Manor, Douglasdale, Jhb Email: warren@crossmanpape.co.za

Telephone: 011 465 1699 Cell: 083 324 4371

Analyses in male	Sample Identification			
Analyses in mg/ℓ	TP64 (0.7-0.85)	TP5 (0.0-0.7)	TP28 (0.3-1.9)	
Sample Number	117193	117194	117195	
pH Value at 25°C	5.0	5.3	5.9	
Electrical Conductivity	6.2	16.1	21.3	
Alkalinity as CaCO₃	8	8	28	
Acidity as CaCO₃	<5	<5	<5	
Resistivity (ohm.cm) (calc)	16129	6211	4695	
Water content (%)	13.7	6.8	17.2	
Sulphide as S ²⁻	0.4	9.8	0.7	
Chloride as Cl	<2	5	<2	
Water Soluble Sulphate as SO ₄	19	21	42	
Acid Soluble Sulphate as SO ₄ *	<5	<5	102	

[*] Colour interference

S. Laubscher

WATERLAB (PTY) LTD CONVERSION OF RESULTS

Date received:26-01-21Date Completed:15-02-21Project number:1000Report number:97570

Client name: Crossman Pape & Associates Contact person: Warren Kretzinger

Adress: 7 Manor Close, Norscot Email: warren@crossmanpape.co.za

Telephone: 011 465 1699 Cell: 083 324 4371

	Chloride	Chloride	Chloride
Sample	as CI	as CI	as CI
number	in mg/l	mg/kg	mmol/kg
Det. Limit	<2	<4	<0.113
117189	7	14	0.395
117190	5	10	0.282
117191	2	4	0.113
117192	2	4	0.113
117193	<2	<4	<0.113
117194	5	10	0.282
117195	<2	<4	<0.113

Sample number	Water Soluble Sulphate As SO₄ in mg/l	Water Soluble Sulphate As SO₄ mg/kg	Water Soluble Sulphate As SO ₄ mmol/kg
Det. Limit	<2	<4	<0.042
117189	29	58	0.604
117190	39	78	0.812
117191	12	24	0.250
117192	30	60	0.625
117193	19	38	0.396
117194	21	42	0.437
117195	42	84	0.874

Sample number	Acid Soluble Sulphate As SO₄ in mg/l	Acid Soluble Sulphate As SO ₄ mg/kg	Acid Soluble Sulphate As SO ₄ mmol/kg
Det. Limit	<5	<20	<0.104
117189	<5	<20	<0.104
117190	12	24	0.250
117191	30	60	0.625
117192	122	244	2.54
117193	<5	<20	<0.104
117194	<5	<20	<0.104
117195	102	204	2.12

Sample number	Total Alkalinity (mg/l)	Total Alkalinity (mg/kg)	Total Alkalinity (mmol/kg)
Det. Limit	<5	<10	<0.100
117189	8	16	0.160
117190	8	16	0.160
117191	56	112	1.119
117192	76	152	1.519
117193	8	16	0.160
117194	8	16	0.160
117195	28	56	0.559

Sample number	Total Acidity (mg/l)	Total Acidity (mg/kg)	Total Acidity (mmol/kg)
Det. Limit	<5	<10	<0.100
117189	<5	<10	<0.100
117190	<5	<10	<0.100
117191	<5	<10	<0.100
117192	<5	<10	<0.100
117193	<5	<10	<0.100
117194	<5	<10	<0.100
117195	<5	<10	<0.100

Sample number	Water Soluble Sulphide As S ²⁻ in mg/l	Water Soluble Sulphide As S ²⁻ mg/kg	Water Soluble Sulphide As S ²⁻ mmol/kg
	<5	<10	<0.312
117189	2.9	5.80	0.181
117190	4.0	8.00	0.249
117191	6.8	14	0.424
117192	1.3	2.60	0.081
117193	0.4	0.800	0.025
117194	9.8	20	0.611
117195	0.7	1.40	0.044